Skip to main content

Advertisement

Log in

Low bone mineral density is not associated with angiographically determined coronary atherosclerosis in men

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study for the first time investigates the association of bone mineral density (BMD) with angiographically determined coronary atherosclerosis in men. Our data show that the prevalence of low BMD is very high in men undergoing coronary angiography. However, neither osteopenia nor osteoporosis is associated with an increased prevalence of angiographically determined coronary atherosclerosis.

Introduction

The association of low BMD with angiographically determined coronary atherosclerosis in men is unknown.

Methods

We enrolled 623 consecutive men undergoing coronary angiography for the evaluation of established or suspected coronary artery disease (CAD). BMD was assessed by dual X-ray absorptiometry. CAD was diagnosed in the presence of any coronary artery lumen narrowing at angiography; coronary stenoses with lumen narrowing ≥50% were considered significant.

Results

From the total study cohort (mean age of 64 ± 11 years), 207 patients (33.2%) had osteopenia and 65 (10.4%) had osteoporosis; at angiography, CAD was diagnosed in 558 patients (89.6%) and 403 (64.7%) had significant coronary stenoses. In multivariate logistic regression analysis neither osteopenia nor osteoporosis was associated with an increased prevalence of CAD (adjusted odds ratios (ORs) = 0.71 [95% confidence interval 0.40–1.23]; p = 0.222 and 1.03 [0.38–2.80]; p = 0.955, respectively) or with significant coronary stenoses (OR 0.74 [0.52–1.07], p = 0.112 and 0.72 [0.41–1.26]; p = 0.251, respectively). Also, as a continuous variable, BMD was not associated with angiographically diagnosed CAD.

Conclusions

The prevalence of low BMD is very high in men undergoing coronary angiography. However, low BMD is not associated with angiographically determined coronary atherosclerosis in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Epstein FH (1996) Cardiovascular disease epidemiology: a journey from the past into the future. Circulation 93:1755–1764

    CAS  PubMed  Google Scholar 

  2. Cooper C, Atkinson EJ, Jacobsen SJ et al (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    CAS  PubMed  Google Scholar 

  3. Keene GS, Parker MJ, Pryor GA (1993) Mortality and morbidity after hip fractures. BMJ 307:1248–1250

    Article  CAS  PubMed  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  5. Dolan P, Torgerson DJ (1998) The cost of treating osteoporotic fractures in the United Kingdom female population. Osteoporos Int 8:611–617

    Article  CAS  PubMed  Google Scholar 

  6. Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17S

    Article  CAS  PubMed  Google Scholar 

  7. Peterson AM, McGhan WF (2005) Pharmacoeconomic impact of non-compliance with statins. Pharmacoeconomics 23:13–25

    Article  PubMed  Google Scholar 

  8. van Jaarsveld CH, Sanderman R, Ranchor AV et al (2002) Gender-specific changes in quality of life following cardiovascular disease: a prospective study. J Clin Epidemiol 55:1105–1112

    Article  PubMed  Google Scholar 

  9. Tanko LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20

    Article  CAS  PubMed  Google Scholar 

  10. Barengolts EI, Berman M, Kukreja SC et al (1998) Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 62:209–213

    Article  CAS  PubMed  Google Scholar 

  11. Kiel DP, Kauppila LI, Cupples LA et al (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68:271–276

    Article  CAS  PubMed  Google Scholar 

  12. Hak AE, Pols HA, van Hemert AM et al (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20:1926–1931

    CAS  PubMed  Google Scholar 

  13. Hofbauer LC, Brueck CC, Shanahan CM et al (2007) Vascular calcification and osteoporosis—from clinical observation towards molecular understanding. Osteoporos Int 18:251–259

    Article  CAS  PubMed  Google Scholar 

  14. Doherty TM, Detrano RC (1994) Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif Tissue Int 54:224–230

    Article  CAS  PubMed  Google Scholar 

  15. Schmid K, McSharry WO, Pameijer CH, Binette JP (1980) Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37:199–210

    Article  CAS  PubMed  Google Scholar 

  16. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93:2393–2402

    Article  CAS  PubMed  Google Scholar 

  17. Bostrom K, Watson KE, Horn S et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    Article  CAS  PubMed  Google Scholar 

  18. Giachelli CM, Bae N, Almeida M et al (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696

    Article  CAS  PubMed  Google Scholar 

  19. Dhore CR, Cleutjens JP, Lutgens E et al (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003

    Article  CAS  PubMed  Google Scholar 

  20. Von der RP, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Article  Google Scholar 

  21. Samelson EJ, Kiel DP, Broe KE et al (2004) Metacarpal cortical area and risk of coronary heart disease: the Framingham Study. Am J Epidemiol 159:589–595

    Article  PubMed  Google Scholar 

  22. Trivedi DP, Khaw KT (2001) Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int 12:259–265

    Article  CAS  PubMed  Google Scholar 

  23. Tanko LB, Christiansen C, Cox DA et al (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  PubMed  Google Scholar 

  24. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326:310–318

    Article  CAS  PubMed  Google Scholar 

  25. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326:242–250

    Article  CAS  PubMed  Google Scholar 

  26. Marcovitz PA, Tran HH, Franklin BA et al (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96:1059–1063

    Article  PubMed  Google Scholar 

  27. Tekin GO, Kekilli E, Yagmur J et al (2008) Evaluation of cardiovascular risk factors and bone mineral density in post menopausal women undergoing coronary angiography. Int J Cardiol 131:66–69

    Article  PubMed  Google Scholar 

  28. Sytkowski PA, D’Agostino RB, Belanger A, Kannel WB (1996) Sex and time trends in cardiovascular disease incidence and mortality: the Framingham Heart Study, 1950–1989. Am J Epidemiol 143:338–350

    CAS  PubMed  Google Scholar 

  29. Chobanian AV, Bakris GL, Black HR et al (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572

    Article  CAS  PubMed  Google Scholar 

  30. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  CAS  PubMed  Google Scholar 

  31. Saely CH, Koch L, Schmid F et al (2006) Lipoprotein(a), type 2 diabetes and vascular risk in coronary patients. Eur J Clin Invest 36:91–97

    Article  CAS  PubMed  Google Scholar 

  32. Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  33. Drexel H, Aczel S, Marte T et al (2005) Is atherosclerosis in diabetes and impaired fasting glucose driven by elevated LDL cholesterol or by decreased HDL cholesterol? Diabetes Care 28:101–107

    Article  CAS  PubMed  Google Scholar 

  34. Muendlein A, Saely CH, Marte T et al (2008) Synergistic effects of the apolipoprotein E epsilon3/epsilon2/epsilon4, the cholesteryl ester transfer protein TaqIB, and the apolipoprotein C3–482 C>T polymorphisms on their association with coronary artery disease. Atherosclerosis 199:179–186

    Article  CAS  PubMed  Google Scholar 

  35. Marte T, Saely CH, Schmid F et al (2009) Effectiveness of atrial fibrillation as an independent predictor of death and coronary events in patients having coronary angiography. Am J Cardiol 103:36–40

    Article  PubMed  Google Scholar 

  36. Saely CH, Drexel H, Sourij H et al (2008) Key role of postchallenge hyperglycemia for the presence and extent of coronary atherosclerosis: an angiographic study. Atherosclerosis 199:317–322

    Article  CAS  PubMed  Google Scholar 

  37. Drexel H, Amann FW, Rentsch K et al (1992) Relation of the level of high-density lipoprotein subfractions to the presence and extent of coronary artery disease. Am J Cardiol 70:436–440

    Article  CAS  PubMed  Google Scholar 

  38. Drexel H, Amann FW, Beran J et al (1994) Plasma triglycerides and three lipoprotein cholesterol fractions are independent predictors of the extent of coronary atherosclerosis. Circulation 90:2230–2235

    CAS  PubMed  Google Scholar 

  39. Gluer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 19:782–793

    Article  PubMed  Google Scholar 

  40. Haussler B, Gothe H, Gol D et al (2007) Epidemiology, treatment and costs of osteoporosis in Germany—the BoneEVA Study. Osteoporos Int 18:77–84

    Article  CAS  PubMed  Google Scholar 

  41. Ebeling PR (2008) Clinical practice. Osteoporosis in men. N Engl J Med 358:1474–1482

    Article  CAS  PubMed  Google Scholar 

  42. Hoefle G, Saely CH, Aczel S et al (2005) Impact of total and central obesity on vascular mortality in patients undergoing coronary angiography. Int J Obes (Lond) 29:785–791

    Article  CAS  Google Scholar 

  43. Saely CH, Koch L, Schmid F et al (2006) Adult Treatment Panel III 2001 but not International Diabetes Federation 2005 criteria of the metabolic syndrome predict clinical cardiovascular events in subjects who underwent coronary angiography. Diabetes Care 29:901–907

    Article  PubMed  Google Scholar 

  44. Varma R, Aronow WS, Basis Y et al (2008) Relation of bone mineral density to frequency of coronary heart disease. Am J Cardiol 101:1103–1104

    Article  PubMed  Google Scholar 

  45. Saely CH, Vonbank A, Rein P et al (2008) Alanine aminotransferase and gamma-glutamyl transferase are associated with the metabolic syndrome but not with angiographically determined coronary atherosclerosis. Clin Chim Acta 397:82–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The VIVIT institute thanks Dr. Egmond Frommelt and the Innovationsstiftung of the Liechtenstein Global Trust (LGT) Bank (Bendern, Liechtenstein), Dr. Karl Josef Hier, Peter Goop Stiftung (Vaduz, Liechtenstein), Gabriela Dür and the Vorarlberger Landesregierung (Bregenz, Austria), Prof. Willi A. Ribi and the University of the Principality of Liechtenstein, as well as the Fachhochschule Dornbirn (Dornbirn, Austria) for providing us with generous research grants. We are grateful to Franz Rauch and the Vorarlberger Industriellenvereinigung (Bregenz, Austria), to Dr. Peter Woess and the Vorarlberger Aerztekammer (Dornbirn, Austria), to Dr. Elmar Bechter, and to Luis Patsch, Drs. Gerald Fleisch and Till Hornung, Directors, Vorarlberger Landeskrankenhaus-Betriebsgesellschaft (Feldkirch, Austria), for continuously supporting our Research Institute. The study was part-financed by the ‘Land Vorarlberg’ and the ‘Europaeischer Fonds fuer regionale Entwicklung’ (EFRE). The sponsor did not participate in analyses or influence the decision to submit for publication.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Drexel.

Additional information

This work was supported by grants from the following institutions: Innovationsstiftung of the Liechtenstein Global Trust (LGT) Bank (Bendern, Liechtenstein); Peter Goop Stiftung (Vaduz, Liechtenstein); Fachhochschule Dornbirn (Dornbirn, Austria); Institute for Clinical Chemistry at the Academic Teaching Hospital Feldkirch (Feldkirch, Austria); Vorarlberger Industriellenvereinigung (Bregenz, Austria); Vorarlberger Landesregierung (Bregenz, Austria); and Vorarlberger Landeskrankenhaus-Betriebsgesellschaft (Feldkirch, Austria).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, S., Saely, C.H., Hoefle, G. et al. Low bone mineral density is not associated with angiographically determined coronary atherosclerosis in men. Osteoporos Int 21, 1695–1701 (2010). https://doi.org/10.1007/s00198-009-1103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1103-y

Keywords

Navigation