Skip to main content
Log in

Radiographic trabecular 2D and 3D parameters of proximal femoral bone cores correlate with each other and with yield stress

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Radiographic images of bone cores taken from cadaver proximal femora provided two-dimensional parameters of projected trabecular patterns that correlated highly with conceptually equivalent three-dimensional parameters in the same cores. Measurements also highly correlated with yield stress, suggesting that both parameters have similar biomechanical qualities.

Introduction

We compared morphometric measurements of trabecular patterns in two-dimensional (2D) projection radiographic images of cores from cadaver proximal femoral bones with conceptually equivalent measurements from three-dimensional microcomputed tomography (3D µCT) images.

Methods

Seven cadaver proximal femora provided 47 excised cores from seven regions. Digitized radiographs of those cores were processed with software that extracts trabecular patterns. Measurements of their distribution, geometry, and connectivity were compared with 3D parameters of similar definition derived from µCT of those cores. The relationship between 2D and 3D measurements and yield stress was also examined.

Results

2D measurements strongly correlated with conceptually equivalent measurements obtained using 3D µCT. In all cases, the correlation coefficients were high, ranging from r = 0.84 (p < 0.001) to r = 0.93 (p < 0.001). The correlation coefficients between 2D and 3D measurements and yield stress of the cores were also high (r = 0.60 and 0.82, p < 0.001, respectively).

Conclusions

These findings provide correlative and biomechanical evidence supporting the qualitative similarity of 2D microstructural parameters extracted from plain proximal femoral core X-ray images to conceptually equivalent 3D microstructural measurements of those same cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Melton LJ 3rd (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    Article  PubMed  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  3. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  4. Rockoff SD, Zettner A, Albright J (1967) Radiographic trabecular quantitation of human lumbar vertebrae in situ. II. Relation to bone quantity, strength and mineral content (preliminary results). Invest Radiol 2:339–352

    Article  PubMed  CAS  Google Scholar 

  5. Rockoff SD (1967) Quantitative microdensitometric x-ray analysis of vertebral trabecular bone. A preliminary report. Radiology 88:794–796

    PubMed  CAS  Google Scholar 

  6. Geraets WGM, van der Stelt PF, Lips P, van Ginkel FC (1998) The radiographic trabecular pattern of hips in patients with hip fractures and in elderly control subjects. Bone 22:165–173

    Article  PubMed  CAS  Google Scholar 

  7. Ouyang X, Majumdar S, Link TM, Lu Y, Augat P, Lin J, Newitt D, Genant HK (1998) Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections. Med Phys 25:2037–2045

    Article  PubMed  CAS  Google Scholar 

  8. Caligiuri P, Giger ML, Favus M (1994) Multifractal radiographic analysis of osteoporosis. Med Phys 21:503–508

    Article  PubMed  CAS  Google Scholar 

  9. Jennane R, Harba R, Lemineur G, Bretteil S, Estrade A, Benhamou CL (2007) Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection. Med Image Anal 11:91–98

    Article  PubMed  Google Scholar 

  10. Lin JC, Grampp S, Link T, Kothari M, Newitt DC, Felsenberg D, Majumdar S (1999) Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 9:516–524

    PubMed  CAS  Google Scholar 

  11. Majumdar S, Weinstein RS, Prasad RR (1993) Application of fractal geometry techniques to the study of trabecular bone. Med Phys 20:1611–1619

    Article  PubMed  CAS  Google Scholar 

  12. Apostol L, Boudousq V, Basset O, Odet C, Yot S, Tabary J, Dinten JM, Boiler E, Kotzki PO, Peyrin F (2006) Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture. Med Phys 33:3546–3556

    Article  PubMed  Google Scholar 

  13. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20:1177–1184

    Article  PubMed  Google Scholar 

  14. Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 15:691–699

    Article  PubMed  CAS  Google Scholar 

  15. Veenland JF, Grashius JL, van der Meer F, Beckers AL, Gelsema ES (1996) Estimation of fractal dimension in radiographs. Med Phys 23:585–594

    Article  PubMed  CAS  Google Scholar 

  16. Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (1999) Relationship between plain radiographic patterns and three-dimensional trabecular architecture in the human calcaneus. Osteoporos Int 9:339–345

    Article  PubMed  CAS  Google Scholar 

  17. Arnaud CD, Liew S, Steines D, Nazarian A, Mueller R, Linder BJ, Lang P (2003) Correlation of 2D trabecular structure parameters with 3D µCT and measurements of bone strength in femoral bone cores. J Bone Miner Res 18(Suppl 2):S56

    Google Scholar 

  18. Arnaud CD, Steines D, Liew S, Nazarian A, Snyder B, Linder BJ, Lang P (2003) Fracture load of fresh-frozen cadaveric proximal femora correlates much better with non-invasive, 2D radiographically derived micro-structural and macro-anatomic indices than with BMD. J Bone Miner Res 18(Supp 2):M107

    Google Scholar 

  19. Nazarian A, Muller J, Zurakowski D, Muller R, Snyder BD (2007) Densitometric, morphometric and mechanical distributions in the human proximal femur. J Biomech 40:2573–2579

    Article  PubMed  Google Scholar 

  20. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  21. White SC, Rudolph DJ (1999) Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:628–635

    Article  PubMed  CAS  Google Scholar 

  22. Russ JC (1999) The image processing handbook. CRC, Boca Raton

    Google Scholar 

  23. Soille P, Rivest J (1996) On the validity of fractal dimension measurements in image analysis. J Vis Commun Image Represent 7:217–229

    Article  Google Scholar 

  24. Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. PWS, Boston

    Google Scholar 

  25. Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi HE, Hara T (1999) Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties. Bone 25:487–491

    Article  PubMed  CAS  Google Scholar 

  26. Lespessailles E, Jullien A, Eynard E, Harba R, Jacquet G, Ildefonse JP, Ohley W, Benhamou CL (1998) Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 31:817–824

    Article  PubMed  CAS  Google Scholar 

  27. Lochmuller EM, Poschl K, Wurstlin L, Matsuura M, Muller R, Link TM, Eckstein F (2008) Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density? Osteoporos Int 19:537–545

    Article  PubMed  Google Scholar 

  28. Lochmuller EM, Kristin J, Matsuura M, Kuhn V, Hudelmaier M, Link TM, Eckstein F (2008) Measurement of trabecular bone microstructure does not improve prediction of mechanical failure loads at the distal radius compared with bone mass alone. Calcif Tissue Int 83:293–299

    Article  PubMed  CAS  Google Scholar 

  29. JT PP, Lochmuller EM, Kuhn V, Nieminen MT, Eckstein F (2008) Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int 19:547–558

    Article  Google Scholar 

  30. Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13(Suppl 2):S41–47

    Article  PubMed  Google Scholar 

  31. Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23:1974–1982

    Article  PubMed  CAS  Google Scholar 

  32. Steines D, Arnaud D, Liew S, Vargas-Voracek R, Bauer DC, Cummings SR, Hess P (2005) Predicting hip fracture in a sub-group of subjects from the study of osteoporotic fracture using automated structural measurement of proximal femur in pelvic radiographs. J Bone Miner Res 20(Suppl 1):S66

    Google Scholar 

Download references

Conflicts of interest

Dr. Steines, Dr. Arnaud, Mr. Liew, and Dr. Vargas-Voracek are employees of Imaging Therapeutics Inc. and own stock in the company. Dr. Lang and Dr. Hess are members of the board of directors of Imaging Therapeutics Inc. and own stock in the company. All other authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Arnaud.

Additional information

Phase 1 NIH SBIR 1 R43 AR049655

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steines, D., Liew, SW., Arnaud, C. et al. Radiographic trabecular 2D and 3D parameters of proximal femoral bone cores correlate with each other and with yield stress. Osteoporos Int 20, 1929–1938 (2009). https://doi.org/10.1007/s00198-009-0908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0908-z

Keywords

Navigation