Skip to main content

Advertisement

Log in

Bone cell–matrix protein interactions

  • Bone Quality Seminars: Ultrastructure
  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Duong LT, Lakkakorpi P, Nakamura I, Rodan GA (2000) Integrins and signaling in osteoclast function. Matrix Biol 19(2):97–105

    Article  PubMed  CAS  Google Scholar 

  2. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170(2):427–435

    Article  PubMed  CAS  Google Scholar 

  3. Horne WC, Sanjay A, Bruzzaniti A, Baron R (2005) The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 208:106–125

    Article  PubMed  CAS  Google Scholar 

  4. Chabadel A, Bañon-Rodríguez I, Cluet D, Rudkin BB, Wehrle-Haller B, Genot E, Jurdic P, Anton IM, Saltel F (2007) CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol Biol Cell 18(12):4899–4910

    Article  PubMed  CAS  Google Scholar 

  5. McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105(4):433–440

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto M, Fisher JE, Gentile M, Seedor JG, Leu CT, Rodan SB, Rodan GA (1998) The integrin ligand echistatin prevents bone loss in ovariectomized mice and rats. Endocrinology 139(3):1411–1419

    Article  PubMed  CAS  Google Scholar 

  7. Engleman VW, Nickols GA, Ross FP, Horton MA, Griggs DW, Settle SL, Ruminski PG, Teitelbaum SL (1997) A peptidomimetic antagonist of the alpha(v) beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest. 99(9):2284–2292

    Article  PubMed  CAS  Google Scholar 

  8. Delaissé JM, Engsig MT, Everts V, del Carmen Ovejero M, Ferreras M, Lund L, Vu TH, Werb Z, Winding B, Lochter A, Karsdal MA, Troen T, Kirkegaard T, Lenhard T, Heegaard AM, Neff L, Baron R, Foged NT (2000) Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta 291(2):223–234

    Article  PubMed  Google Scholar 

  9. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A 95(23):13453–13458

    Article  PubMed  CAS  Google Scholar 

  10. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14(10):1654–1663

    Article  PubMed  CAS  Google Scholar 

  11. Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE (2001) Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci USA 98(10):5798–5803

    Article  PubMed  CAS  Google Scholar 

  12. Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G (2007) A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 40(1):122–131

    Article  PubMed  CAS  Google Scholar 

  13. Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M (2001) Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 16(10):1739–1746

    Article  PubMed  CAS  Google Scholar 

  14. Xiang A, Kanematsu M, Kumar S, Yamashita D, Kaise T, Kikkawa H, Asano S, Kinoshita M (2007) Changes in micro-CT 3D bone parameters reflect effects of a potent cathepsin K inhibitor (SB-553484) on bone resorption and cortical bone formation in ovariectomized mice. Bone 40(5):1231–1237

    Article  PubMed  CAS  Google Scholar 

  15. Fuller K, Lawrence KM, Ross JL, Grabowska UB, Shiroo M, Samuelsson B, Chambers TJ (2008) Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone 42(1):200–211

    Article  PubMed  CAS  Google Scholar 

  16. Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W (1999) Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J 13(10):1219–1230

    PubMed  CAS  Google Scholar 

  17. Hill PA, Murphy G, Docherty AJ, Hembry RM, Millican TA, Reynolds JJ, Meikle MC (1994) The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. J Cell Sci 107(Pt 11):3055–3064

    PubMed  CAS  Google Scholar 

  18. Sato T, Foged NT, Delaissé JM (1998) The migration of purified osteoclasts through collagen is inhibited by matrix metalloproteinase inhibitors. J Bone Miner Res 13(1):59–66

    Article  PubMed  CAS  Google Scholar 

  19. Mosig RA, Dowling O, DiFeo A, Ramirez MC, Parker IC, Abe E, Diouri J, Aqeel AA, Wylie JD, Oblander SA, Madri J, Bianco P, Apte SS, Zaidi M, Doty SB, Majeska RJ, Schaffler MB, Martignetti JA (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16(9):1113–1123

    Article  PubMed  CAS  Google Scholar 

  20. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park JS, Onodera T, Krane SM, Noda M, Itohara S (2006) A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem 281(44):33814–33824

    Article  PubMed  CAS  Google Scholar 

  21. Geoffroy V, Marty-Morieux C, Le Goupil N, Clement-Lacroix P, Terraz C, Frain M, Roux S, Rossert J, de Vernejoul MC (2004) In vivo inhibition of osteoblastic metalloproteinases leads to increased trabecular bone mass. J Bone Miner Res 19(5):811–822

    Article  PubMed  CAS  Google Scholar 

  22. Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, Chrysovergis K, Yamada S, Birkedal-Hansen H, Poole AR (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118(Pt 1):147–156

    Article  PubMed  CAS  Google Scholar 

  23. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, Delaissé JM, Foged NT (2002) Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem 277(46):44061–44067

    Article  PubMed  CAS  Google Scholar 

  24. Zaidi M, Adebanjo OA, Moonga BS, Sun L, Huang CL (1999) Emerging insights into the role of calcium ions in osteoclast regulation. J Bone Miner Res 14(5):669–674

    Article  PubMed  CAS  Google Scholar 

  25. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78(5):3204–3208

    Article  PubMed  CAS  Google Scholar 

  26. Marie PJ, Fromigué O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1(4):539–548

    Article  PubMed  CAS  Google Scholar 

  27. Damsky CH (1999) Extracellular matrix–integrin interactions in osteoblast function and tissue remodeling. Bone 25:95–96

    Article  PubMed  CAS  Google Scholar 

  28. Zimmerman D, Jin F, Leboy P et al (2000) Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev Biol 220(1):2–15

    Article  PubMed  CAS  Google Scholar 

  29. Xiao G, Wang D, Benso MD, Karsenty G, Franceschi RT (1998) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273:32988–32994

    Article  PubMed  CAS  Google Scholar 

  30. Globus RK, Amblard D, Nishimura Y, Iwaniec UT, Kim JB, Almeida EA, Damsky CD, Wronski TJ, van der Meulen MC (2005) Skeletal phenotype of growing transgenic mice that express a function-perturbing form of beta1 integrin in osteoblasts. Calcif Tissue Int 76(1):39–49

    Article  PubMed  CAS  Google Scholar 

  31. Klees RF, Salasznyk RM, Kingsley K, Williams WA, Boskey A, Plopper GE (2005) Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol Biol Cell 16(2):881–890

    Article  PubMed  CAS  Google Scholar 

  32. Ding HT, Wang CG, Zhang TL, Wang K (2006) Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway. J Cell Biochem 99(5):1343–1352

    Article  PubMed  CAS  Google Scholar 

  33. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275(13):9645–9652

    Article  PubMed  CAS  Google Scholar 

  34. Kim JB, Leucht P, Luppen CA, Park YJ, Beggs HE, Damsky CH, Helms JA (2007) Reconciling the roles of FAK in osteoblast differentiation, osteoclast remodeling, and bone regeneration. Bone 41(1):39–51

    Article  PubMed  CAS  Google Scholar 

  35. Kaabeche K, Guenou H, Bouvard D, Didelot N, Listrat A, Marie PJ (2005) Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 118(Pt 6):1223–1232

    Article  PubMed  CAS  Google Scholar 

  36. Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 249:RE12

    Article  Google Scholar 

  37. Wozniak M, Fausto A, Carron CP, Meyer DM, Hruska KA (2000) Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression. J Bone Miner Res 15(9):1731–1745

    Article  PubMed  CAS  Google Scholar 

  38. Sakata T, Wang Y, Halloran BP, Elalieh HZ, Cao J, Bikle DD (2004) Skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) by inhibiting activation of the IGF-I signaling pathways. J Bone Miner Res 19(3):436–446

    Article  PubMed  CAS  Google Scholar 

  39. Iwaniec UT, Wronski TJ, Amblard D, Nishimura Y, van der Meulen MC, Wade CE, Bourgeois MA, Damsky CD, Globus RK (2005) Effects of disrupted beta1-integrin function on the skeletal response to short-term hindlimb unloading in mice. J Appl Physiol 98(2):690–696

    Article  PubMed  CAS  Google Scholar 

  40. Dufour C, Holy X, Marie PJ (2007) Skeletal unloading induces osteoblast apoptosis and targets alpha5beta1-PI3K-Bcl-2 signaling in rat bone. Exp Cell Res 313(2):394–403

    Article  PubMed  CAS  Google Scholar 

  41. Dufour C, Holy X, Marie PJ (2008) Transforming growth factor-beta prevents osteoblast apoptosis induced by skeletal unloading via PI3K/Akt, Bcl-2, and phospho-Bad signaling. Am J Physiol Endocrinol Metab 294(4):E794–E801

    Article  PubMed  CAS  Google Scholar 

  42. Jones SJ, Boyde A, Ali NN (1986) The interface of cells and their matrices in mineralized tissues: a review. Scan Electron Microsc (Pt 4):1555-69

  43. Zhao W, Byrne MH, Wang Y, Krane SM (2000) Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 106(8):941–949

    Article  PubMed  CAS  Google Scholar 

  44. Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473(2):117–123

    Article  PubMed  CAS  Google Scholar 

  45. Noble BS (2008) The osteocyte lineage. Arch Biochem Biophys 473(2):106–111

    Article  PubMed  CAS  Google Scholar 

  46. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18(9):1657–1663

    Article  PubMed  Google Scholar 

  47. Mullender MG, Tan SD, Vico L, Alexandre C, Klein-Nulend J (2005) Differences in osteocyte density and bone histomorphometry between men and women and between healthy and osteoporotic subjects. Calcif Tissue Int 77(5):291–296

    Article  PubMed  CAS  Google Scholar 

  48. Burger EH, Klein-Nulen J (1999) Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13:93–98

    Article  PubMed  CAS  Google Scholar 

  49. van Bezooijen RL, ten Dijke P, Papapoulos SE, Löwik CW (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16(3):319–327

    Article  PubMed  Google Scholar 

  50. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37(2):148–158

    Article  PubMed  CAS  Google Scholar 

  51. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875

    Article  PubMed  CAS  Google Scholar 

  52. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116(5):1202–1209

    Article  PubMed  CAS  Google Scholar 

  53. Harris SE, Gluhak-Heinrich J, Harris MA, Yang W, Bonewald LF, Riha D, Rowe PS, Robling AG, Turner CH, Feng JQ, McKee MD, Nicollela D (2007) DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: theoretical role in controlling mineral quality in the perilacunar matrix. J Musculoskelet Neuronal Interact 7(4):313–315

    PubMed  CAS  Google Scholar 

  54. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38(11):1310–1315

    Article  PubMed  CAS  Google Scholar 

  55. Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34(2):303–319

    Article  PubMed  CAS  Google Scholar 

  56. Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278(3):1998–2007

    Article  PubMed  CAS  Google Scholar 

  57. Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A 104(40):15941–15946

    Article  PubMed  CAS  Google Scholar 

  58. Weinstein RS, Manolagas SC (2000) Apoptosis and osteoporosis. Am J Med 108(2):153–164

    Article  PubMed  CAS  Google Scholar 

  59. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5(6):464–475

    Article  PubMed  CAS  Google Scholar 

  60. Zhao W, Byrne MH, Wang Y, Krane SM (2000) Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 106(8):941–949

    Article  PubMed  CAS  Google Scholar 

  61. Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann NY Acad Sci 1116:281–290

    Article  PubMed  CAS  Google Scholar 

  62. Marie PJ (2001) The molecular genetics of bone formation: implications for therapeutic interventions in bone disorders. Am J Pharmacogenomics 1(3):175–187

    Article  PubMed  CAS  Google Scholar 

  63. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  PubMed  CAS  Google Scholar 

  64. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20(1):78–82

    Article  PubMed  CAS  Google Scholar 

  65. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105(7):915–923

    Article  PubMed  CAS  Google Scholar 

  66. Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A 96(14):8156–8160

    Article  PubMed  CAS  Google Scholar 

  67. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22(2):286–297

    Article  PubMed  CAS  Google Scholar 

  68. Malaval L, Wade-Guéye NM, Boudiffa M, Fei J, Zirngibl R, Chen F, Laroche N, Roux JP, Burt-Pichat B, Duboeuf F, Boivin G, Jurdic P, Lafage-Proust MH, Amédée J, Vico L, Rossant J, Aubin JE (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205(5):1145–1153

    Article  PubMed  CAS  Google Scholar 

  69. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41(3):462–473

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Marie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marie, P.J. Bone cell–matrix protein interactions. Osteoporos Int 20, 1037–1042 (2009). https://doi.org/10.1007/s00198-009-0856-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0856-7

Keywords

Navigation