Osteoporosis International

, Volume 20, Issue 10, pp 1675–1682 | Cite as

BMD, clinical risk factors and their combination for hip fracture prevention

  • H. Johansson
  • J. A. Kanis
  • A. Oden
  • O. Johnell
  • E. McCloskey
Original Article

Abstract

Summary

This study examined the effects of the use of clinical risk factors (CRFs) alone, BMD alone or the combination using the FRAX® tool for the detection of women at risk of hip fracture. BMD tests alone selected women at higher risk and a greater number of hip fracture cases were identified compared to the use of CRFs alone. The combined use of CRFs and BMD identified fewer women above a threshold risk than the use of BMD alone, but with a higher hip fracture risk and thus had the more favourable positive predictive value (PPV) and number needed to treat (NNT).

Introduction

Algorithms have recently become available for the calculation of hip fracture probability from CRFs with and without information on femoral neck BMD. The aim of this study was to examine the effects of the use of CRFs alone, BMD alone or their combination using the FRAX® tool for the detection of women at risk of hip fracture.

Methods

Data from 10 prospective population based cohorts, in which BMD and CRFs were documented, were used to compute the 10-year probabilities of hip fracture calibrated to the fracture and death hazards of the UK. The effects of the use of BMD tests were examined in simulations where BMD tests were used alone, CRFs alone or their combined use. The base case examined the effects in women at the age of 65 years. The principal outcome measures were the number of women identified above an intervention threshold, the number of hip fracture cases that would be identified, the positive predicted value and the NNT to prevent a hip fracture during a hypothetical treatment with an effectiveness of 35% targeted to those above the threshold fracture risk. We also examined BMD values in women selected for treatment. Sensitivity analysis examined the effect of age and limited use of BMD resources.

Results

BMD tests alone selected women at higher risk of hip fracture than the use of CRFs alone (6.1% versus 5.3%). BMD tests alone also identified a greater number of hip fracture cases (219/1,000) compared to the use of CRFs alone (140/1,000). The combined use of CRFs and BMD identified fewer women above a threshold risk than the use of BMD alone (168/1,000 versus 219/1,000, respectively), but with a higher hip fracture risk (PPV, 8.6% versus 6.1%), and consequently a lower number needed to treat (NNT) (33 versus 47). In sensitivity analyses, the PPV and NNT were always better for the combination than either BMD or CRFs alone across all ages studied (50–70 years).

Conclusions

The use of FRAX® in combination with BMD increases the performance characteristics of fracture risk assessment.

Keywords

FRAX® Hip fracture Number needed to treat Positive predictive value 

References

  1. 1.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259Google Scholar
  2. 2.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA et al (2005) Predictive value of bone mineral density for hip and other fractures. J Bone Miner Res 20:1185–1194PubMedCrossRefGoogle Scholar
  3. 3.
    Kanis JA, Johnell O, Oden A, Jönsson B, De Laet C, Dawson A (2000) Risk of hip fracture according to World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590PubMedCrossRefGoogle Scholar
  4. 4.
    Hui SL, Slemenda CW, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809PubMedCrossRefGoogle Scholar
  5. 5.
    De Laet CEDH, van Hout BA, Burger H, Hofman A, Pols HAP (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. Br Med J 315:221–225Google Scholar
  6. 6.
    World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical Report Series 843. WHO, GenevaGoogle Scholar
  7. 7.
    De Laet C, Oden A, Johansson H, Johnell O, Jonsson B, Kanis JA (2005) The impact of the use of multiple risk indicators for fracture on case-finding strategies: a mathematical approach. Osteoporos Int 16:313–318PubMedCrossRefGoogle Scholar
  8. 8.
    Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822PubMedCrossRefGoogle Scholar
  9. 9.
    Kanis JA, Johnell O, Oden A, Jönsson B, Dawson A, Dere W (2000) Risk of hip fracture derived from relative risks: an analysis applied to the population of Sweden. Osteoporos Int 11:120–127PubMedCrossRefGoogle Scholar
  10. 10.
    Kanis JA, Johnell O, Oden A, De Laet C, Jonsson B, Dawson A (2002) Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone 30:251–285PubMedCrossRefGoogle Scholar
  11. 11.
    Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA et al (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–1037PubMedCrossRefGoogle Scholar
  12. 12.
    Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Melton LJ III et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899PubMedCrossRefGoogle Scholar
  13. 13.
    Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382PubMedCrossRefGoogle Scholar
  14. 14.
    Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA et al (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742PubMedCrossRefGoogle Scholar
  15. 15.
    Kanis JA, Johansson H, Oden A et al (2005) A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int 16:799–804PubMedCrossRefGoogle Scholar
  16. 16.
    Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162PubMedCrossRefGoogle Scholar
  17. 17.
    De Laet C, Kanis JA, Oden A, Johansson H, Johnell O, Delmas P et al (2005) Body mass index as a prediction of fracture risk. A meta-analysis. Osteoporos Int 16:1330–1338PubMedCrossRefGoogle Scholar
  18. 18.
    Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046PubMedCrossRefGoogle Scholar
  19. 19.
    Kanis JA, Johnell O, Oden A, McCloskey E (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedCrossRefGoogle Scholar
  20. 20.
    Kanis JA on behalf of the World Health Organization Scientific Group (2008) Assessment of osteoporosis at the primary health-care level. Technical Report. WHO Collaborating Centre, University of Sheffield, UK, 2008Google Scholar
  21. 21.
    Kanis JA, Johnell O (2005) Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int 16:229–238PubMedCrossRefGoogle Scholar
  22. 22.
    Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D, European Foundation for Osteoporosis and Bone Disease (1997) Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 7:390–406PubMedCrossRefGoogle Scholar
  23. 23.
    Royal College of Physicians (1999) Osteoporosis: clinical guidelines for prevention and treatment. The Royal College of Physicians of LondonGoogle Scholar
  24. 24.
    Royal College of Physicians (2001) Osteoporosis: clinical guidelines for prevention and treatment. Update on pharmacological interventions and an algorithm for management. RCP, LondonGoogle Scholar
  25. 25.
    Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA (1991) Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 7:403–422PubMedCrossRefGoogle Scholar
  26. 26.
    De Laet CEDH, Van Hout BA, Burger H, Hofman A, Weel AEAM, Pols HAP (1998) Hip fracture prediction in elderly men and women: validation of the Rotterdam study. J Bone Miner Res 13:1587–1593PubMedCrossRefGoogle Scholar
  27. 27.
    O’Neill TW, Felsenberg D, Barlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1017PubMedCrossRefGoogle Scholar
  28. 28.
    Kreiger N, Tenenhouse A, Joseph L et al (1999) The Canadian Multicentre Osteoporosis Study CaMos: background, rationale, methods. Can J Aging 18:376–387Google Scholar
  29. 29.
    Melton LJ III, Crowson CS, O’Fallon WM, Wahner HW, Riggs BL (2003) Relative contributions of bone density, bone turnover and clinical risk factors to long-term fracture prediction. J Bone Miner Res 18:312–318PubMedCrossRefGoogle Scholar
  30. 30.
    Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923PubMedCrossRefGoogle Scholar
  31. 31.
    McCloskey EV, Beneton M, Charlesworth D, Kayan K, deTakats D, Dey A et al (2007) Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J Bone Miner Res 22:135–141PubMedCrossRefGoogle Scholar
  32. 32.
    Jones G, Nguyen TV, Sambrook PN, Kelly PJ, Gilbert C, Eisman JA (1994) Symptomatic fracture incidence in elderly men and women. The Dubbo Osteoporosis Epidemiology Study DOES. Osteoporos Int 4:277–282PubMedCrossRefGoogle Scholar
  33. 33.
    Svanborg A (1977) 70 year old people in Gothenburg. A population study in an industrialised Swedish city. II. Journal presentation of social and medical conditions. Acta Med Scand 611(suppl):5Google Scholar
  34. 34.
    Johansson C, Black D, Johnell O, Oden A, Mellstrom D (1998) Bone mineral density is a predictor of survival. Calcif Tissue Int 63:190–196PubMedCrossRefGoogle Scholar
  35. 35.
    Fujiwara S, Kasagi F, Yamada M, Kodama K (1997) Risk factors for hip fracture in Japanese cohort. J Bone Miner Res 12:998–1004PubMedCrossRefGoogle Scholar
  36. 36.
    Fujiwara S, Fumiyoshi K, Masunari W, Narito K, Suzuki G, Fukunagi M (2003) Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res 18:1547–1553PubMedCrossRefGoogle Scholar
  37. 37.
    Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Oglesby A (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244PubMedCrossRefGoogle Scholar
  38. 38.
    National Osteoporosis Foundation (NOF) (2003) Physician’s Guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation, Washington, DC (http://www.nof.org/physguide/Physicians_Guide.pdf)
  39. 39.
    Kanis JA, Borgstrom F, Zethraeus N, Johnell O, Oden A, Jonsson B (2005) Intervention thresholds for osteoporosis in the UK. Bone 36:22–32PubMedCrossRefGoogle Scholar
  40. 40.
    Johansson H, Oden A, Johnell O, Jonsson B, De Laet C, Oglesby A et al (2004) Optimisation of BMD measurements to identify high risk groups for treatment—a test analysis. J Bone Miner Res 19:906–913PubMedCrossRefGoogle Scholar
  41. 41.
    Borgstrom F, Johnell O, Kanis JA, Jonsson B, Renhberg C (2006) At what hip fracture risk is it cost-effective to treat? International intervention thresholds for the treatment of osteoporosis. Osteoporos Int 17:1459–1471PubMedCrossRefGoogle Scholar
  42. 42.
    Deeks JJ, Altman DG (2004) Diagnostic tests 4: likelihood ratios. Br Med J 329:168–169CrossRefGoogle Scholar
  43. 43.
    Brown J, Josse RG, The Scientific Advisory Council of the Osteoporosis Society of Canada (2002) Clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. Canad Med Assoc J 167(suppl 10):S1–S34Google Scholar
  44. 44.
    Community European (1998) Report on osteoporosis in the European Community. EC, StrasbourgGoogle Scholar
  45. 45.
    Kanis JA, Burlet N, Cooper C, On behalf of the European Society for Clinical, Economic Aspects of Osteoporosis, Osteoarthritis (ESCEO) et al (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428PubMedCrossRefGoogle Scholar
  46. 46.
    Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936PubMedCrossRefGoogle Scholar
  47. 47.
    De Laet C, Oden A, Johnell O, Jonsson B, Kanis JA (2005) The impact of the use of multiple risk factors on case finding strategies: a mathematical framework. Osteoporos Int 16:313–318PubMedCrossRefGoogle Scholar
  48. 48.
    McCloskey E, Johansson H, Oden A, Jalava T, Kanis J (2008) Efficacy of clodronate on fracture risk in women selected by 10-year fracture probability. J Bone Miner Res 22(1):S17Google Scholar
  49. 49.
    Kanis JA, Johansson H, Oden A, McCloskey EV (2008) Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX®. Bone, in pressGoogle Scholar
  50. 50.
    Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12:417–427PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • H. Johansson
    • 1
  • J. A. Kanis
    • 1
  • A. Oden
    • 1
  • O. Johnell
    • 2
  • E. McCloskey
    • 1
    • 3
  1. 1.WHO Collaborating Centre for Metabolic Bone DiseasesUniversity of Sheffield Medical SchoolSheffieldUK
  2. 2.Department of OrthopaedicsMalmö General HospitalMalmöSweden
  3. 3.Metabolic Bone CentreNorthern General HospitalSheffieldUK

Personalised recommendations