Skip to main content
Log in

Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The aim of this study is to demonstrate the deficiencies of dual-energy X-ray absorptiometry (DXA), compared with quantitative computed tomography, to reflect and differentiate between changes in bone mineral density and microstructure that contribute to a well-defined finding of altered skeletal state for both osteoporosis and renal osteodystrophy induced by chronic renal insufficiency.

Introduction

The aim of this study is to demonstrate the deficiencies of dual-energy X-ray absorptiometry (DXA), compared with quantitative CT, to reflect and differentiate between changes in bone mineral density and microstructure that contribute to a well-defined finding of altered skeletal state for both osteoporosis and renal osteodystrophy induced by chronic renal insufficiency.

Methods

Forty-five female Sprague–Dawley rats were divided into three equal groups: control, ovariectomy, and nephrectomy. Following euthanasia, femurs were excised, divided into diaphyseal and distal metaphyseal sections, and subjected to DXA and micro-CT imaging and mechanical testing.

Results

Ovariectomy does not affect the structural and mechanical properties of cortical bone material, but partial nephrectomy does adversely affect these properties. Both are verified by DXA and micro-CT imaging and mechanical testing. Meanwhile, nephrectomy does not affect trabecular bone microstructure or equivalent density, yet ovariectomy affects the trabecular microstructure. DXA is unable to detect changes in trabecular bone microstructure in relation to changes in their mechanical properties.

Discussion

Dual energy X-ray absorptiometry measures the average bone mineral content in a 2D projected area and cannot differentiate whether the changes occur in the bone microstructure or equivalent bone tissue density. In contrast, micro-CT provides an accurate measurement of the changes in both equivalent bone tissue mineral density and microstructure for cancellous and cortical bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riggs BL, Melton LJ III (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505S–511S

    Article  PubMed  CAS  Google Scholar 

  2. Chrischilles EA, Butler CD, Davis CS, Wallace RB (1991) A model of lifetime osteoporosis impact. Arch Intern Med 151:2026–2032

    Article  PubMed  CAS  Google Scholar 

  3. Roche JJ, Wenn RT, Sahota O, Moran CG (2005) Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ 331:1374

    Article  PubMed  CAS  Google Scholar 

  4. Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  5. Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  6. Cummings SR, Karpf DB, Harris F et al (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  7. Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  PubMed  Google Scholar 

  8. Bauer DC, Black DM, Garnero P et al (2004) Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the Fracture Intervention Trial. J Bone Miner Res 19:1250–1258

    Article  PubMed  Google Scholar 

  9. Riggs BL, Melton LJ III (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Article  PubMed  Google Scholar 

  10. Hayes WC, Bouxsein ML (1997) Biomechanics of cortical and trabecular bone: implication for assessment of fracture risk. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Lippincott-Raven, Philadelphia, pp 69–112

    Google Scholar 

  11. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21:155–168

    Article  PubMed  CAS  Google Scholar 

  12. Snyder SM, Schneider E (1991) Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res 9:422–431

    Article  PubMed  CAS  Google Scholar 

  13. Favus MJ (ed) (2006) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC

    Google Scholar 

  14. LeBoff MS, Kohlmeier L, Hurwitz S, Franklin J, Wright J, Glowacki J (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA 281:1505–1511

    Article  PubMed  CAS  Google Scholar 

  15. Glowacki J, Hurwitz S, Thornhill TS, Kelly M, LeBoff MS (2003) Osteoporosis and vitamin-D deficiency among postmenopausal women with osteoarthritis undergoing total hip arthroplasty. J Bone Joint Surg Am 85-A:2371–2377

    PubMed  Google Scholar 

  16. Aaron J, Gallagher JC, Nordin BE (1974) Osteomalacia [letter]. Lancet 1:939

    Article  PubMed  CAS  Google Scholar 

  17. Aaron J, Gallagher JC, Nordin BE (1974) Osteomalacia and femoral fractures [letter]. Lancet 1:572

    Article  PubMed  CAS  Google Scholar 

  18. Chalmers J, Barclay A, Davison AM, Macleod DA, Williams DA (1969) Quantitative measurements of osteoid in health and disease. Clin Orthop Relat Res 63:196–209

    PubMed  CAS  Google Scholar 

  19. Sokoloff L (1978) Occult osteomalacia in American (U.S.A.) patients with fracture of the hip. Am J Surg Pathol 2:21–30

    Article  PubMed  CAS  Google Scholar 

  20. Lips P, Netelenbos JC, Jongen MJ et al (1982) Histomorphometric profile and vitamin D status in patients with femoral neck fracture. Metab Bone Dis Relat Res 4:85–93

    Article  PubMed  CAS  Google Scholar 

  21. Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  PubMed  CAS  Google Scholar 

  22. Miller SC, Wronski TJ (1993) Long-term osteopenic changes in cancellous bone structure in ovariectomized rats. Anat Rec 236:433–441

    Article  PubMed  CAS  Google Scholar 

  23. Reddy Nagareddy P, Lakshmana M (2005) Assessment of experimental osteoporosis using CT-scanning, quantitative X-ray analysis and impact test in calcium deficient ovariectomized rats. J Pharmacol Toxicol Methods 52:350–355

    Article  PubMed  CAS  Google Scholar 

  24. Yao W, Hadi T, Jiang Y, Lotz J, Wronski TJ, Lane NE (2005) Basic fibroblast growth factor improves trabecular bone connectivity and bone strength in the lumbar vertebral body of osteopenic rats. Osteoporos Int 16:1939–1947

    Article  PubMed  CAS  Google Scholar 

  25. Ito M, Nishida A, Aoyagi K, Uetani M, Hayashi K, Kawase M (2005) Effects of risedronate on trabecular microstructure and biomechanical properties in ovariectomized rat tibia. Osteoporos Int 16:1042–1048

    Article  PubMed  CAS  Google Scholar 

  26. Hornby SB, Evans GP, Hornby SL, Pataki A, Glatt M, Green JR (2003) Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int 72:519–527

    Article  PubMed  CAS  Google Scholar 

  27. Ogawa K, Hori M, Takao R, Sakurada T (2005) Effects of combined elcatonin and alendronate treatment on the architecture and strength of bone in ovariectomized rats. J Bone Miner Metab 23:351–358

    Article  PubMed  CAS  Google Scholar 

  28. Kaczmarczyk-Sedlak I, Janiec W, Pytlik M et al (2005) Effect of administration of etidronate and retinol on bone mechanical properties in ovariectomized rats. Pharmacol Rep 57:203–211

    PubMed  CAS  Google Scholar 

  29. Guo XE, Goldstein SA (2000) Vertebral trabecular bone microscopic tissue elastic modulus and hardness do not change in ovariectomized rats. J Orthop Res 18:333–336

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, Orhii PB, Banu J, Kalu DN (2001) Effects of separate and combined therapy with growth hormone and parathyroid hormone on lumbar vertebral bone in aged ovariectomized osteopenic rats. Bone 28:202–207

    Article  PubMed  CAS  Google Scholar 

  31. Feng JQ, Ward LM, Liu S et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed  CAS  Google Scholar 

  32. Turner CH, Owan I, Brizendine EJ, Zhang W, Wilson ME, Dunipace AJ (1996) High fluoride intakes cause osteomalacia and diminished bone strength in rats with renal deficiency. Bone 19:595–601

    Article  PubMed  CAS  Google Scholar 

  33. Jokihaara J, Jarvinen TL, Jolma P et al (2006) Renal insufficiency-induced bone loss is associated with an increase in bone size and preservation of strength in rat proximal femur. Bone 39:353–360

    Article  PubMed  Google Scholar 

  34. Miller MA, Chin J, Miller SC, Fox J (1998) Disparate effects of mild, moderate, and severe secondary hyperparathyroidism on cancellous and cortical bone in rats with chronic renal insufficiency. Bone 23:257–266

    Article  PubMed  CAS  Google Scholar 

  35. Kazama JJ, Iwasaki Y, Yamato H et al (2003) Microfocus computed tomography analysis of early changes in bone microstructure in rats with chronic renal failure. Nephron 95:e152–e157

    Article  PubMed  Google Scholar 

  36. Brkovic D, Linke J, Jakse G, Bauss F (2005) Changes in bone structure after augmentation cystoplasty in chronic uraemic rats. BJU Int 95:1066–1070

    Article  PubMed  Google Scholar 

  37. Freesmeyer MG, Abendroth K, Faldum A, Krauss C, Stein G (2001) Comparison of peripheral bone and body axis skeleton in a rat model of mild-to-moderate renal failure in the presence of physiological serum levels of calcitropic hormones. Bone 29:258–264

    Article  PubMed  CAS  Google Scholar 

  38. Melhus G, Solberg LB, Dimmen S, Madsen JE, Nordsletten L, Reinholt FP (2007) Experimental osteoporosis induced by ovariectomy and vitamin D deficiency does not markedly affect fracture healing in rats. Acta Orthop 78:393–403

    Article  PubMed  Google Scholar 

  39. Keaveny TM, Borchers RE, Gibson LJ, Hayes WC (1993) Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J Biomech 26:599–607

    Article  PubMed  CAS  Google Scholar 

  40. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  41. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23

    Article  Google Scholar 

  42. Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  43. Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int 12:936–941

    Article  PubMed  CAS  Google Scholar 

  44. Ocarino NM, Marubayashi U, Cardoso TG et al (2007) Physical activity in osteopenia treatment improved the mass of bones directly and indirectly submitted to mechanical impact. J Musculoskelet Neuronal Interact 7:84–93

    PubMed  CAS  Google Scholar 

  45. Jiang SD, Shen C, Jiang LS, Dai LY (2007) Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int 18:743–750

    Article  PubMed  Google Scholar 

  46. Iwaniec UT, Moore K, Rivera MF, Myers SE, Vanegas SM, Wronski TJ (2007) A comparative study of the bone-restorative efficacy of anabolic agents in aged ovariectomized rats. Osteoporos Int 18:351–362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Komen Foundation for providing financial support for this project (BDS Grant No: BCTR0403271). Additionally, they would like to acknowledge the efforts of Michael Bohanske, John Muller, Laura Gould, and Jeffrey O’Connell from the Orthopedic Biomechanics Laboratory with specimen preparation and testing.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Snyder.

Additional information

A. Nazarian and E. Cory have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarian, A., Cory, E., Müller, R. et al. Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Osteoporos Int 20, 123–132 (2009). https://doi.org/10.1007/s00198-008-0632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0632-0

Keywords

Navigation