Skip to main content

Sex hormones, their receptors and bone health

Abstract

Sex steroids regulate skeletal maturation and preservation in both men and women, as already recognized in the 1940s by Albright and Reifenstein. The impact of gonadal insufficiency on skeletal integrity has been widely recognized in adult men and women ever since. In the context of their skeletal actions, androgens and estrogens are no longer considered as just male and female hormones, respectively. Androgens can be converted into estrogens within the gonads and peripheral tissues and both are present in men and women, albeit in different concentrations. In the late 1980s, sex steroid receptors were discovered in bone cells. However, the understanding of sex steroid receptor activation and translation into biological skeletal actions is still incomplete. Due to the complex metabolism, sex steroids may have not only endocrine but also paracrine and/or autocrine actions. Also, circulating sex steroid concentrations do not necessarily reflect their biological activity due to strong binding to sex hormone binding globulin (SHBG). Finally, sex steroid signaling may include genomic and non-genomic effects in bone and non-bone cells. This review will focus on our current understanding of gonadal steroid metabolism, receptor activation, and their most relevant cellular and biological actions on bone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Melton LJ 3rd, Kan SH, Wahner HW, Riggs BL (1988) Lifetime fracture risk: an approach to hip fracture risk assessment based on bone mineral density and age. J Clin Epidemiol 41:985–994

    Article  PubMed  Google Scholar 

  2. Wilson JD (2001) The role of 5alpha-reduction in steroid hormone physiology. Reprod Fertil Dev 13:673–678

    CAS  Article  PubMed  Google Scholar 

  3. Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C, Jones M (2002) Aromatase–a brief overview. Annu Rev Physiol 64:93–127

    CAS  Article  PubMed  Google Scholar 

  4. Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26:833–876

    CAS  Article  PubMed  Google Scholar 

  5. Vermeulen A, Verdonk L (1968) Studies on the binding of testosterone to human plasma. Steroids 11:609–635

    CAS  Article  PubMed  Google Scholar 

  6. Giorgi EP, Stein WD (1981) The transport of steroids into animal cells in culture. Endocrinology 108:688–697

    CAS  Article  PubMed  Google Scholar 

  7. Khosla S, Melton LJ, Atkinson EJ, O-Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men: a key role for bio-available estrogen. J Clin Endocrinol Metab 83:2266–2275

    CAS  PubMed  Google Scholar 

  8. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425

    CAS  Article  PubMed  Google Scholar 

  9. Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    CAS  Article  PubMed  Google Scholar 

  10. McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344

    CAS  PubMed  Google Scholar 

  11. Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610

    CAS  Article  PubMed  Google Scholar 

  12. Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med 76:469–479

    CAS  Article  PubMed  Google Scholar 

  13. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74:311–317

    CAS  Article  PubMed  Google Scholar 

  14. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    CAS  Article  PubMed  Google Scholar 

  15. Wiren KM, Toombs AR, Zhang XW (2004) Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol 32:209–226

    CAS  Article  PubMed  Google Scholar 

  16. Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    CAS  Article  PubMed  Google Scholar 

  17. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M (2000) Multiple actions of steroid hormones–a focus on rapid, nongenomic effects. Pharmacol Rev 52:513–556

    CAS  PubMed  Google Scholar 

  18. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83:965–1016

    Article  PubMed  Google Scholar 

  19. Pietras RJ, Szego CM (1977) Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265:69–72

    CAS  Article  PubMed  Google Scholar 

  20. Konoplya EF, Popoff EH (1992) Identification of the classical androgen receptor in male rat liver and prostate cell plasma membranes. Int J Biochem 24:1979–1983

    CAS  Article  PubMed  Google Scholar 

  21. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (2002) Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation. Mol Endocrinol 16:116–127

    CAS  PubMed  Google Scholar 

  22. Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M, Barone MV, Ametrano D, Zannini MS, Abbondanza C, Auricchio F (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. Embo J 19:5406–5417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730

    CAS  PubMed  Google Scholar 

  24. Kousteni S, Han L, Chen JR, Almeida M, Plotkin LI, Bellido T, Manolagas SC (2003) Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 111:1651–1664

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846

    CAS  Article  PubMed  Google Scholar 

  26. Moverare S, Dahllund J, Andersson N, Islander U, Carlsten H, Gustafsson JA, Nilsson S, Ohlsson C (2003) Estren is a selective estrogen receptor modulator with transcriptional activity. Mol Pharmacol 64:1428–1433

    CAS  Article  PubMed  Google Scholar 

  27. Windahl SH, Galien R, Chiusaroli R, Clement-Lacroix P, Morvan F, Lepescheux L, Nique F, Horne WC, Resche-Rigon M, Baron R (2006) Bone protection by estrens occurs through non-tissue-selective activation of the androgen receptor. J Clin Invest 116:2500–2509

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Centrella M, McCarthy TL, Chang WZ, Labaree DC, Hochberg RB (2004) Estren (4-estren-3alpha,17beta-diol) is a prohormone that regulates both androgenic and estrogenic transcriptional effects through the androgen receptor. Mol Endocrinol 18:1120–1130

    CAS  Article  PubMed  Google Scholar 

  29. Krishnan V, Bullock HA, Yaden BC, Liu M, Barr RJ, Montrose-Rafizadeh C, Chen K, Dodge JA, Bryant HU (2005) The nongenotropic synthetic ligand 4-estren-3alpha17beta-diol is a high-affinity genotropic androgen receptor agonist. Mol Pharmacol 67:744–748

    CAS  Article  PubMed  Google Scholar 

  30. Moverare S, Venken K, Eriksson AL, Andersson N, Skrtic S, Wergedal J, Mohan S, Salmon P, Bouillon R, Gustafsson JA, Vanderschueren D, Ohlsson C (2003) Differential effects on bone of estrogen receptor alpha and androgen receptor activation in orchidectomized adult male mice. Proc Natl Acad Sci USA 100:13573–13578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Seeman E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 12:509–521

    CAS  Article  PubMed  Google Scholar 

  32. Juul A (2001) The effects of oestrogens on linear bone growth. Hum Reprod Update 7:303–313

    CAS  Article  PubMed  Google Scholar 

  33. Vanderschueren D, Van Herck E, Geusens P, Suiker A, Visser W, Chung K, Bouillon R (1994) Androgen resistance and deficiency have different effects on the growing skeleton of the rat. Calcif Tissue Int 55:198–203

    CAS  Article  PubMed  Google Scholar 

  34. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara K, Yamamoto Y, Nakamichi Y, Metzger D, Chambon P, Nakamura K, Kawaguchi H, Kato S (2003) Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci USA 100:9416–9421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Vandenput L, Swinnen JV, Boonen S, Van Herck E, Erben RG, Bouillon R, Vanderschueren D (2004) Role of the androgen receptor in skeletal homeostasis: the androgen-resistant testicular feminized male mouse model. J Bone Miner Res 19:1462–1470

    CAS  Article  PubMed  Google Scholar 

  36. Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D (2006) Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: A study in the androgen receptor knock-out mouse model: A Study in the Androgen Receptor Knock-out Mouse Model. J Bone Miner Res 21:576–585

    CAS  Article  PubMed  Google Scholar 

  37. Gennari L, Nuti R, Bilezikian JP (2004) Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 89:5898–5907

    CAS  Article  PubMed  Google Scholar 

  38. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

    CAS  Article  PubMed  Google Scholar 

  39. Seeman E (2001) Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    CAS  Article  PubMed  Google Scholar 

  40. Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8:612–617

    CAS  Article  PubMed  Google Scholar 

  41. Lea C, Kendall N, Flanagan AM (1996) Casodex (a nonsteroidal antiandrogen) reduces cancellous, endosteal, and periosteal bone formation in estrogen-replete female rats. Calcif Tissue Int 58:268–272

    CAS  Article  PubMed  Google Scholar 

  42. Dagogo-Jack S, al-Ali N, Qurttom M (1997) Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab 82:2821–2825

    CAS  PubMed  Google Scholar 

  43. Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C (1999) Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(-/-) mice. J Clin Invest 104:895–901

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Bouillon R, Bex M, Vanderschueren D, Boonen S (2004) Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 89:6025–6029

    CAS  Article  PubMed  Google Scholar 

  45. Rochira V, Zirilli L, Madeo B, Aranda C, Caffagni G, Fabre B, Montangero VE, Roldan EJ, Maffei L, Carani C (2007) Skeletal effects of long-term estrogen and testosterone replacement treatment in a man with congenital aromatase deficiency: evidences of a priming effect of estrogen for sex steroids action on bone. Bone 40:1662–1668

    CAS  Article  PubMed  Google Scholar 

  46. Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C (2000) Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA 97:5474–5479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Vanderschueren D, van Herck E, Nijs J, Ederveen AG, De Coster R, Bouillon R (1997) Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138:2301–2307

    CAS  PubMed  Google Scholar 

  48. Vanderschueren D, Venken K, Bouillon R (2004) Animal models for gender-based skeletal differences. In: Legato M (ed) Principles of gender-specific medicine. Elsevier Academic Press, pp 1043–1051

  49. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Jarvinen TL, Kannus P, Sievanen H (2003) Estrogen and bone–a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931

    Article  PubMed  Google Scholar 

  51. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82:2386–2390

    CAS  Article  PubMed  Google Scholar 

  52. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  53. Riggs BL (2000) The mechanisms of estrogen regulation of bone resorption. J Clin Invest 106:1203–1204

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-b. Nat Med 2:1132–1136

    CAS  Article  PubMed  Google Scholar 

  55. Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20:2224–2232

    CAS  Article  PubMed  Google Scholar 

  56. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen Prevents Bone Loss via Estrogen Receptor alpha and Induction of Fas Ligand in Osteoclasts. Cell 130:811–823

    CAS  Article  PubMed  Google Scholar 

  57. Chen Q, Kaji H, Kanatani M, Sugimoto T, Chihara K (2004) Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm Metab Res 36:674–678

    CAS  Article  PubMed  Google Scholar 

  58. Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, Murray R, Manolagas SC (1995) Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 95:2886–2895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Huber DM, Bendixen AC, Pathrose P, Srivastava S, Dienger KM, Shevde NK, Pike JW (2001) Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology 142:3800–3808

    CAS  Article  PubMed  Google Scholar 

  60. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    CAS  Article  PubMed  Google Scholar 

  61. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    Article  PubMed  Google Scholar 

  62. Seeman E (2003) Periosteal bone formation–a neglected determinant of bone strength. N Engl J Med 349:320–323

    Article  PubMed  Google Scholar 

  63. Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R, Vanderschueren D (2002) Evidence from the aged orchidectomized male rat model that 17beta-estradiol is a more effective bone-sparing and anabolic agent than 5alpha-dihydrotestosterone. J Bone Miner Res 17:2080–2086

    CAS  Article  PubMed  Google Scholar 

  64. Venken K, Boonen S, Van Herck E, Vandenput L, Kumar N, Sitruk-Ware R, Sundaram K, Bouillon R, Vanderschueren D (2005) Bone and muscle protective potential of the prostate-sparing synthetic androgen 7alpha-methyl-19-nortestosterone: Evidence from the aged orchidectomized male rat model. Bone 36:663–670

    CAS  Article  PubMed  Google Scholar 

  65. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    CAS  Article  PubMed  Google Scholar 

  66. Barrett-Connor E, Mueller JE, van Mühlen DG, Laughlin GA, Schneider DL, Sartoris DJ (2000) Low levels of estradiol are associated with vertebral fractures in older men but not in women. The Rancho Bernardo Study. J Clin Endocrinol Metab 85:219–223

    CAS  PubMed  Google Scholar 

  67. Van Pottelbergh I, Goemaere S, Kaufman JM (2003) Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab 88:3075–3081

    Article  PubMed  Google Scholar 

  68. Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    CAS  Article  PubMed  Google Scholar 

  69. Eastell R (2007) Aromatase inhibitors and bone. J Steroid Biochem Mol Biol 106:157–161

    CAS  Article  PubMed  Google Scholar 

  70. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, Dlewati A, Staley J, Santanna J, Kapoor SC, Attie MF, Haddad Jr JG, Strom BL (1999) Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 84:1966–1972

    CAS  PubMed  Google Scholar 

  71. Kenny AM, Prestwood KM, Marcello KM, Raisz LG (2000) Determinants of bone density in healthy older men with low testosterone levels. J Gerontol A Biol Sci Med Sci 55A:M492–M497

    Article  Google Scholar 

  72. Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, Aleman A, Lock TM, Bosch JL, Grobbee DE, van der Schouw YT (2008) Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. Jama 299:39–52

    CAS  PubMed  Google Scholar 

  73. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. Jama 288:321–333

    CAS  Article  PubMed  Google Scholar 

  74. Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, Bonds D, Brunner R, Brzyski R, Caan B, Chlebowski R, Curb D, Gass M, Hays J, Heiss G, Hendrix S, Howard BV, Hsia J, Hubbell A, Jackson R, Johnson KC, Judd H, Kotchen JM, Kuller L, LaCroix AZ, Lane D, Langer RD, Lasser N, Lewis CE, Manson J, Margolis K, Ockene J, O’Sullivan MJ, Phillips L, Prentice RL, Ritenbaugh C, Robbins J, Rossouw JE, Sarto G, Stefanick ML, Van Horn L, Wactawski-Wende J, Wallace R, Wassertheil-Smoller S (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. Jama 291:1701–1712

    CAS  Article  PubMed  Google Scholar 

  75. Johnell O, Kanis JA, Black DM, Balogh A, Poor G, Sarkar S, Zhou C, Pavo I (2004) Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 19:764–772

    CAS  Article  PubMed  Google Scholar 

  76. Seeman E, Crans GG, Diez-Perez A, Pinette KV, Delmas PD (2006) Anti-vertebral fracture efficacy of raloxifene: a meta-analysis. Osteoporos Int 17:313–316

    Article  PubMed  Google Scholar 

  77. McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW (1995) Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol 9:659–669

    CAS  PubMed  Google Scholar 

  78. Chen J, Kim J, Dalton JT (2005) Discovery and therapeutic promise of selective androgen receptor modulators. Mol Interv 5:173–188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT (2006) Drug insight: Testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab 2:146–159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vanderschueren.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venken, K., Callewaert, F., Boonen, S. et al. Sex hormones, their receptors and bone health. Osteoporos Int 19, 1517–1525 (2008). https://doi.org/10.1007/s00198-008-0609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0609-z

Keywords

  • Bone growth
  • Bone maintenance
  • Osteoporosis
  • Sex steroids
  • Sex steroid receptors
  • Sex steroid receptor signaling