Skip to main content

Advertisement

Log in

Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Here we report the results of a vitamin D-binding protein gene microsatellite polymorphism study in 170 men, comprising healthy male subjects and men with osteoporosis-related symptomatic vertebral fractures. We confirm the results of an earlier study in a different cohort, showing relationship between certain genotypes of (TAAAn)-Alu repeats and reduced BMD and vertebral fractures.

Introduction

Vitamin D-binding protein (DBP) plays a critical role in the transport and metabolism of metabolites of vitamin D, including the key calciotropic hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3).

Methods

We have investigated intra-intronic variable tandem (TAAA)n-Alu repeat expansion in the DBP gene in 170 men, comprising healthy male subjects and men with idiopathic osteoporosis and low trauma fractures.

Results and conclusions

The predominant DBP-Alu genotype in the control subjects was 10/10 (frequency 0.421), whereas the frequency of this genotype in men with osteoporosis was 0.089. DBP-Alu alleles *10, *8 and *9, respectively, were the three commonest in both healthy subjects and men with osteoporosis. Allele *10 was associated with a lower risk of osteoporosis (OR 0.39, 95% CI 0.25–0.64; p < 0.0005), as was allele *11 (odds ratio 0.09, 95% CI 0.01–0.67; p < 0.007). Logistic regression gave similar results, showing that individuals with genotype 10/10 and 19–20 repeats (genotypes 9/10, 9/11, 10/10,) are protected from fracture or osteoporosis. Overall, there was a relationship between DBP Alu genotype and BMD, suggesting that DBP-Alu genotype may influence fracture risk. This effect may be mediated by changes in the circulating concentrations of DBP which influences free concentrations of vitamin D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DBP:

Vitamin D-binding protein

BMD:

Bone mineral density

25(OH)D:

25α-hydroxyvitamin D3

1,25(OH)2D3 :

1α,25-dihydroxyvitamin D3

BMI:

Body mass index

STR:

Short tandem repeats

References

  1. Francis RM, Peacock M, Marshall DH et al (1989) Spinal osteoporosis in men. Bone Miner 5:347–357

    Article  PubMed  CAS  Google Scholar 

  2. Smith DM, Nance WE, Kang KW et al (1973) Genetic factors in determining bone mass. J Clin Invest 52:2800–2808

    Article  PubMed  CAS  Google Scholar 

  3. Christian JC, Yu PL, Slemenda CW, Johnston CC (1989) Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet 44:429–433

    PubMed  CAS  Google Scholar 

  4. Pocock NA, Eisman JA, Hopper JL et al (1987) Genetic determinants of bone mass in adults: a twin study. J Clin Invest 80:706–710

    Article  PubMed  CAS  Google Scholar 

  5. Ngyuen TV, Blangero J, Eisman JA (2000) Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res 15:392–401

    Article  Google Scholar 

  6. Klein RF, Mitchell SR, Phillips TJ et al (1998) Quantitative trait loci affecting peak bone mineral density in mice. J Bone Min Res 135:1648–1656

    Article  Google Scholar 

  7. Yong-Jun Liu Y-J, Shen H, Xiao P et al (2006) Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 21:1511–1535

    Article  PubMed  Google Scholar 

  8. Koller DL, Alam I, Sun Q et al (2005) Genome screen for bone mineral density phenotypes in Fisher 344 and Lewis rat strains. Mamm Genome 16:578–586

    Article  PubMed  Google Scholar 

  9. Orwoll ES, Belknap JK, Klein RF (2001) Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res 16:1962–1971

    Article  PubMed  CAS  Google Scholar 

  10. Duncan EL, Cardon LR, Sinsheimer JS (2003) Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 18:1531–1538

    Article  PubMed  Google Scholar 

  11. Shen H, Zhang YY, Long JR et al (2004) A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Xq27. J Med Genet 41:743–751

    Article  PubMed  CAS  Google Scholar 

  12. Karasik D, Myers RH, Cupples LA et al (2002) Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham Study. J Bone Miner Res 17:1718–1727

    Article  PubMed  CAS  Google Scholar 

  13. Devoto M, Spotila LD, Stabley DL et al (2005) Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density. Eur J Hum Genet 13:781–788

    Article  PubMed  CAS  Google Scholar 

  14. Kammerer CM, Schneider JL, Cole SA (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18:2245–2252

    Article  PubMed  CAS  Google Scholar 

  15. Ralston SH, Galwey N, Mackay I et al (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951

    Article  PubMed  CAS  Google Scholar 

  16. Wilson SG, Reed PW, Bansal A et al (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72:144–155

    Article  PubMed  CAS  Google Scholar 

  17. Koller DL, Liu G, Econs MJ et al (2001) Genome screen for quantitative trait loci underlying normal variation in femoral structure. J Bone Miner Res 16:985–991

    Article  PubMed  CAS  Google Scholar 

  18. Peacock M, Koller DL, Fishburn T et al (2005) Sex-specific and non-sex-specific quantitative trait loci contribute to normal variation in bone mineral density in men. J Clin Endocrinol Metab 90:3060–3066

    Article  PubMed  CAS  Google Scholar 

  19. Nui T, Chen C, Cordell H et al (1999) A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 104:226–233

    Article  Google Scholar 

  20. Shultz KL, Donahue LR, Bouxsein ML et al (2003) Congenic strains of mice for verification and genetic decomposition of quantitative trait loci for femoral bone mineral density. J Bone Miner Metab 18:1–13

    Google Scholar 

  21. Orwoll ES, Belknap JK, Klein RF (2001) Gender Specificity in the genetic determinant of bone mass. J Bone Miner Res 16:1962–1971

    Article  PubMed  CAS  Google Scholar 

  22. Shen H, Liu Y, Liu P, Recker RR, Deng HW (2005) Nonreplication in genetic studies of complex diseases lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res 20:365–376

    Article  PubMed  CAS  Google Scholar 

  23. Guo SW (2000) Gene-environment interaction and the mapping of complex traits: Some statistical models and their implications. Hum Hered 50:286–303

    Article  PubMed  CAS  Google Scholar 

  24. Francis RM, Harrington F, Turner E et al (1997) Vitamin D receptor gene polymorphism in men and its effect on bone density and calcium absorption. Clin Endocrinol 46:83–86

    Article  CAS  Google Scholar 

  25. Papiha SS, Allcroft LC, Kannan RM et al (1999) Vitamin D binding protein gene in male osteoporosis: association of plasma DBP and bone mineral density with [TAAA)n-Alu polymorphism in DBP. Calcif Tissue Int 65:262–266

    Article  PubMed  CAS  Google Scholar 

  26. Kanan RM, Varanasi SS, Francis RM et al (2000) Vitamin D receptor gene start codon polymorphism (FokI) and bone mineral density in control male subjects. Clin Endocrinol 53:93–98

    Article  CAS  Google Scholar 

  27. Allcroft LC, Varanasi SS, Dimopoulos D et al (2002) Mutational and polymorphic analysis of the estradiol receptor-a gene in men with symptomatic vertebral fractures. Calcif Tissue Int 71:400–405

    Article  PubMed  CAS  Google Scholar 

  28. Xiong DH, Shen H, Zhao LJ et al (2006) A robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 Caucasian nuclear families identified significant association and gene-gene interaction. Bone Miner Res 21:1678–1695

    Article  CAS  Google Scholar 

  29. Ezura Y, Nakajima T, Kajita M et al (2003) Association of molecular variants, haplotypes, and linkage disequilibrium within the human vitamin D-binding protein (DBP) gene with postmenopausal bone mineral density. J Bone Miner Res 18:1642–1649

    Article  PubMed  CAS  Google Scholar 

  30. Safadi FF, Thornton P, Magiera H et al (1999) Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest 103:239–251

    Article  PubMed  CAS  Google Scholar 

  31. Nykjaer A, Dragun D, Walther D et al (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-[OH) vitamin D3. Cell 96:507–515

    Article  PubMed  CAS  Google Scholar 

  32. Leheste JR, Melsen F, Wellner M et al (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249

    PubMed  CAS  Google Scholar 

  33. Poor G, Atkinson EJ, O’Fallon WM, Melton LJ (1995) Predictors of hip fractures in elderly men. J Bone Miner Res 10:1900–1907

    Article  PubMed  CAS  Google Scholar 

  34. Scane AC, Francis RM, Sutcliffe AM et al (1999) Case-control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporos Int 9:91–97

    Article  PubMed  CAS  Google Scholar 

  35. Tuck SP, Raj N, Summers GD (2002) Is distal forearm fracture in men due to osteoporosis? Osteoporosis Int 13:630–636

    Article  CAS  Google Scholar 

  36. Al-oanzi ZH, Tuck SP, Raj N et al (2006) Assessment of vitamin D status in male osteoporosis. Clin Chem 52:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  PubMed  CAS  Google Scholar 

  38. Norris J, Fan D, Aleman C et al (1995) Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers. J Biol Chem 270:22777–22782

    Article  PubMed  CAS  Google Scholar 

  39. Dunger DB, Ong KKL, Huxtable SJ et al (1998) Association of the INS VNTR with size at birth. Nat Genet 19:98–100

    Article  PubMed  CAS  Google Scholar 

  40. Ferrari SL, Deutsch S, Choudhury U et al (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74:866–875

    Article  PubMed  CAS  Google Scholar 

  41. Taes YE, Goemaere S, Huang G et al (2006) Vitamin D binding protein, bone status and body composition in community-dwelling elderly men. Bone 38:701–707

    Article  PubMed  CAS  Google Scholar 

  42. White P, Cooke NE (2000) The multifunctional properties and characteristics of vitamin D binding protein (DBP). Trends Endocrinol Metab 11:320–327

    Article  PubMed  CAS  Google Scholar 

  43. Pike JW (2005) Molecular actions of vitamin D and its analogs in transcriptional regulation in vivo and in vitro. Program and abstracts of the Endocrine Society’s 87th Annual Meeting; June 4–7, 2005; San, Diego, California. Symposium 13–21

  44. Verboven C, Rabijns A, De Maeyer M et al (2002) A structural basis for the unique binding features of the human vitamin D- binding protein. Nat Struct Biol 9:131–136

    Article  PubMed  CAS  Google Scholar 

  45. Cooper C, Javaid K, Westlake S (2005) Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr 135:2728S–2734S

    PubMed  CAS  Google Scholar 

  46. Terraz C, Toman D, Delauche M (2001) Delta Ef1 binds to a far upstream sequence of the mouse pro-alpha 1[I) collagen gene and represses its expression in osteoblasts. J Biol Chem 276:37011–37019

    Article  PubMed  CAS  Google Scholar 

  47. Karen Sooy K, Demay MB (2002) Transcriptional repression of the rat osteocalcin gene by EF1. Endocrinology 143:3370–3375

    Article  PubMed  CAS  Google Scholar 

  48. Takagi T, Moribe H, Kondoh H, Higashi Y (1998) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125:21–31

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Osteoporosis Society and Newcastle Hospital Special Trustees (HKD and RMF), and the EU project ‘Osteogene’ (No. FP6-502491) (HKD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Datta.

Additional information

Funding sources: FP6 (EU), National Osteoporosis Society (U.K); Newcastle University Hospitals Special Trustees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-oanzi, Z.H., Tuck, S.P., Mastana, S.S. et al. Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men. Osteoporos Int 19, 951–960 (2008). https://doi.org/10.1007/s00198-007-0516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0516-8

Keywords

Navigation