Skip to main content

Advertisement

Log in

Serum insulin-like growth factor-I level is associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes mellitus

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Multivariate logistic regression analysis showed that serum IGF-I level was significantly lower in postmenopausal diabetic women with vertebral fractures than in those without fractures. Serum IGF-I level could be clinically useful for assessing the risk of vertebral fractures independent of BMD in postmenopausal women with type 2 diabetes.

Introduction

We investigated the relationships among serum IGF-I and C-peptide levels, BMD, and vertebral fractures in postmenopausal women with type 2 diabetes.

Methods

A total of 131 postmenopausal women with type 2 diabetes were consecutively recruited, and radiographic and biochemical characteristics were collected.

Results

Either IGF-I or C-peptide was not correlated with BMD at any site or bone metabolic markers, such as osteocalcin (OC) and urinary N-terminal cross-linked telopeptide of type-I collagen (uNTX). However, serum IGF-I level was significantly lower in subjects with vertebral fractures than in those without fractures (mean ± SD: 106.9 ± 50.0 vs. 142.8 ± 50.8 ng/ml, p = 0.0006). When multivariate logistic regression analysis was performed with the presence of vertebral fractures as a dependent variable and serum IGF-I adjusted for the parameters described above as independent variables, IGF-I was selected as an index affecting the presence of vertebral fractures [odds ratio = 0.436, 95% confidential interval 0.234–0.814 per SD increase, p = 0.0092]. This significance was almost the same after additional adjustment for lumbar BMD or C-peptide.

Conclusions

Serum IGF-I level could be clinically useful for assessing the risk of vertebral fractures independent of BMD in postmenopausal women with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canalis E (1983) The hormonal and local regulation of bone formation. Endocr Rev 4:62–77

    PubMed  CAS  Google Scholar 

  2. Mohan S, Baylink DJ (1991) Bone growth factors. Clin Orthop Relat Res 263:30–48

    PubMed  Google Scholar 

  3. Ueland T (2004) Bone metabolism in relation to alterations in systemic growth hormone. Growth Horm IGF Res 14:404–417

    PubMed  CAS  Google Scholar 

  4. McCarthy TL, Centrella M, Canalis E (1989) Insulin-like growth factor (IGF) and bone. Connect Tissue Res 20:277–282

    PubMed  CAS  Google Scholar 

  5. Mohan S (1993) Insulin-like growth factor binding proteins in bone cell regulation. Growth Regul 3:67–70

    PubMed  CAS  Google Scholar 

  6. Johansson AG, Lindh E, Ljunghall S (1992) Insulin-like growth factor I stimulates bone turnover in osteoporosis. Lancet 339:1619

    Article  PubMed  CAS  Google Scholar 

  7. Schwander JC, Hauri C, Zapf J, Froesch ER (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology 113:297–305

    PubMed  CAS  Google Scholar 

  8. Spencer EM, Liu CC, Si EC, Howard GA (1991) In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats. Bone 12:21–26

    Article  PubMed  CAS  Google Scholar 

  9. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-I directly regulate bone growth and density. J Clin Invest 110:771–781

    Article  PubMed  CAS  Google Scholar 

  10. Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K (1997) Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 12:1272–1279

    Article  PubMed  CAS  Google Scholar 

  11. Yamaguchi T, Kanatani M, Yamauchi M, Kaji H, Sugishita T, Baylink DJ, Mohan S, Chihara K, Sugimoto T (2006) Serum levels of insulin-like growth factor (IGF); IGF-Binding protein-3, -4, and -5; and their relationships to bone mineral density and the risk of vertebral fractures in postmenopausal women. Calcif Tissue Int 78:18–24

    Article  PubMed  CAS  Google Scholar 

  12. Hampson G, Evans C, Petitt RJ, Evans WD, Eoodhead SJ, Peters JR, Ralston SH (1998) Bone mineral density, collagen type 1 alpha 1 genotypes and bone turnover in postmenopausal women with diabetes mellitus. Diabetologia 41:1314–1320

    Article  PubMed  CAS  Google Scholar 

  13. Munoz-Torres M, Jodar E, Escobar-Jimenez F, Lopez-Ibarra PJ, Luna JD (1996) Bone mineral density measured by dual X-ray absorptiometry in Spanish patients with insulin-dependent diabetes mellitus. Calcif Tissue Int 58:316–319

    Article  PubMed  CAS  Google Scholar 

  14. Jehle PM, Jehle DR, Mohan S, Bohm BO (1998) Serum levels of insulin-like growth factor system components and relationship to bone metabolism in type 1 and type 2 diabetes mellitus patients. J Endocrinol 159:297–306

    Article  PubMed  CAS  Google Scholar 

  15. Barrett-Connor E, Holbrook TL (1992) Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 268:3333–3337

    Article  PubMed  CAS  Google Scholar 

  16. Van Daele PL, Stolk RP, Berger H, Algra D, Grobbee DE, Hofman A, Birkenhager JC, Pols HA (1995) Bone density in non-insulin-dependent diabetes mellitus. The Rotterdam Study. Am Intern Med 122:409–414

    Google Scholar 

  17. Isaia GC, Ardissone P, Di Stefano M, Ferrari D, Martina V, Porta M, Tagliabue M, Molinatti GM (1999) Bone metabolism in type 2 diabetes mellitus. Acta Diabetol 36:35–38

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38

    Article  PubMed  CAS  Google Scholar 

  19. Nicodemus KK, Folsom AR; lowa Women’s Health Study (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197

    Article  PubMed  CAS  Google Scholar 

  20. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617

    Article  PubMed  Google Scholar 

  21. Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetelogia 48:1292–1299

    Article  CAS  Google Scholar 

  22. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2001) Blue Mountains Eye Study: diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358

    Article  PubMed  CAS  Google Scholar 

  24. National Osteoporosis Foundation Working Group on Vertebral Fractures (1995) Assessing vertebral fractures: a report by the National Osteoporosis Working Group on Vertebral Fractures. J Bone Miner Res 10:518–523

    Article  Google Scholar 

  25. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    PubMed  CAS  Google Scholar 

  26. Kaji H, Nomura R, Yamauchi M, Chihara K, Sugimoto T (2006) The usefulness of bone metabolic indices for the prediction of changes in bone mineral density after parathyroidectomy in patients with primary hyperparathyroidism. Horm Metab Res 38:411–416

    Article  PubMed  CAS  Google Scholar 

  27. Thrailkill KM (2000) Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diabetes Technol Ther 2:69–80

    Article  PubMed  CAS  Google Scholar 

  28. Terada M, Inaba M, Yano Y, Hasuma Y, Nishizawa Y, Morii H, Otani S (1998) Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22:17–23

    Article  PubMed  CAS  Google Scholar 

  29. McCarthy AD, Etcheverry SB, Cortizo AM (2001) Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol 38:113–122

    Article  PubMed  CAS  Google Scholar 

  30. Daughaday WH, Phillips LS, Mueller MC (1976) The effects of insulin and growth hormone on the release of somatomedin by the isolated rat liver. Endocrinology 98:1214–1219

    Article  PubMed  CAS  Google Scholar 

  31. Scott CD, Baxter RC (1986) Production of insulin-like growth factor I and its binding protein in rat hepatocytes cultured from diabetic and insulin-treated diabetic rats. Endocrinology 119:2346–2352

    PubMed  CAS  Google Scholar 

  32. Hanaire-Broutin H, Sallerin-Caute B, Poncet MF, Tauber M, Bastide R, Rosenfeld R, Tauber JP (1996) Insulin therapy and GH-IGF-I axis disorders in diabetes: impact of glycemic control and hepatic insulization. Diabetes Metab 22:245–250

    PubMed  CAS  Google Scholar 

  33. Flyvbjerg A (1990) Growth factors and diabetic complications. Diabet Med 7:387–399

    PubMed  CAS  Google Scholar 

  34. Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteopos Int 11:556–561

    Article  CAS  Google Scholar 

  35. Looker AC, Bauer DC, Chesnut CH 3rd, Gundberg CM, Hochberg MC, Klee G, Kleerekoper M, Watts NB, Bell NH (2000) Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporos Int 11:467–480

    Article  PubMed  CAS  Google Scholar 

  36. Anonymous (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 17:1–45

    Google Scholar 

  37. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  38. Liberman UA, Weiss SR, Broll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M (1995) Effect of oral adendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333:1437–1443

    Article  PubMed  CAS  Google Scholar 

  39. Rosen CJ, Kurland ES, Vereault D, Adler RA, Rackoff PJ, Craig WY, Witte S, Rogers J, Bilezikian JP (1998) Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 83:2286–2290

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanazawa, I., Yamaguchi, T., Yamamoto, M. et al. Serum insulin-like growth factor-I level is associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int 18, 1675–1681 (2007). https://doi.org/10.1007/s00198-007-0430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0430-0

Keywords

Navigation