Skip to main content

Advertisement

Log in

First meeting on bone quality, Abbaye des Vaux de Cernay, France, 15–16 June 2006: Bone architecture

  • Bone Quality Seminars
  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 1
Fig. 2
Fig. 1
Fig. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 1
Fig. 1
Fig. 2
Fig. 1
Fig. 2
Fig. 3

References

Editorial

  1. Johnell O, Kanis JA, Johansson H et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Google Scholar 

  2. Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Google Scholar 

  3. NIH Consensus Development Panel on Osteoporosis Prevention (2001) Diagnosis, and therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Google Scholar 

  4. Follet H, Bruyère-Garnier K, Peyrin F et al (2005) 2D and 3D synchrotron microtomography. Bone 36:340–351

    Google Scholar 

  5. Benhamou CL, Poupon S, Lespessailles E et al (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16:697–704

    Google Scholar 

  6. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Google Scholar 

  7. Cummings SR, Melton LJ III (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Google Scholar 

  8. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Pierre D, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY Study. J Bone Miner Res 20:1929–1943

    Google Scholar 

  9. Sarkar S, Mitlab B, Wong M, Stock JL, Black DM, Harper KD (2002) Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 17:1–10

    Google Scholar 

  10. Li Z, Meredith MP, Hoseyni MS (2001) A method to assess the proportion of treatment effect explained by a surrogate endpoint. Stat Med 20:3175–3188

    Google Scholar 

  11. Seeman E, Delmas P (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Google Scholar 

Toolbox for 3D imaging and modelling of porous media

  1. Levitz P (2002) Statistical modeling of pore network. In: Schuth F, Sing K, Weitkamp J (eds) Handbook of porous media. Wiley, New York, p 37–80

  2. Ryde S, Anderson S, Larson K, Blum Z, Landh T, Lidin S, Ninham BW (1997) The language of shape: the role of curvature in condensed matter. Elsevier, Amsterdam, pp 1–368

  3. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT, Olson DH, Sheppard EW, McMullen SB, Higgins JB, Schlenker JB (1992) J Am Chem Soc 114:10834

    Google Scholar 

  4. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

  5. Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, Weinheim, Germany, pp 1–482

  6. Metzler R (2004) Topology matters: some aspects of DNA physics. In: Fourkas JT, Levitz P, Urbakh M, Wahl KJ (eds) Dynamics in small confining systems VI, vol 790. Materials Research Society, Warrendale, PA

  7. Dullien FA (1976) Porous media: fluid transport and pore structure. Academic, New York

  8. Barrett LK, Yust CS (1970) Some fundamental ideas in topology and their application to problems in metallography. Metallography 3:1–33

    Google Scholar 

  9. Serra J (1982) Image analysis and mathematical morphology. Academic, London

  10. Cousin I, Levitz P, Bruand A (1996) Three-dimensional analysis of a loamy–clay soil using pore and solid chord distributions. Eur J Soil Sci 47:439–452

    Google Scholar 

  11. Cousin I, Porion P, Renault P, Levitz P (1999) Gas diffusion in a loamy–clay soil: experimental study on a undisturbed soil core and simulation in its three dimensional reconstruction. Eur J Soil Sci 50:249–259

    Google Scholar 

  12. Pothuaud L, Porion P, Lespessailles E, Benhamou CL, Levitz P (2000) A new method for three-dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture. J Microsc 199:149–161

    Google Scholar 

  13. Pothuaud L, Van Rietbergen B, Mosekilde L, Beuf O, Levitz P, Benhamou CL, Majumdar S (2002) Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J Biomech 35(8):1091–1099

    Google Scholar 

  14. Djabourov M, Bonnet N, Kaplan H, Favard N, Favard P, Lechaire JP, Maillard M (1993) 3D analysis of gelatin gel networks from transmission electron microscopy imaging. J Phys II 3:611–624

    Google Scholar 

  15. Reiss H (1992) Statistical geometry in the study of fluids and porous media. J Phys Chem 96(12):4736–4747

    Google Scholar 

  16. Doi M (1976) A new variational approach to the problems of porous media. J Phys Soc Jpn 40:567–572

    Google Scholar 

  17. Torquato S (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44:37–76

    Google Scholar 

  18. Debye P, Anderson HR, Brumberger H (1957) Scattering by an inhomogeneous solid. II. The correlation function and its application. J Appl Phys 28:679–683

    Google Scholar 

  19. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

  20. Porod G (1967) Syracuse. In: Brumberger H (ed) Small-angle X-rays scattering. Gordon and Breach Science Publ, New York, pp 1–15

  21. Mering J, Tchoubar D (1968) Interpretation de la diffusion. Centrale des rayons x par les systemes poreux. J Appl Cryst 1:153–165

    Google Scholar 

  22. Levitz P, Tchoubar D (1992) Disordered porous solids: from chord distributions to small angle scattering. J Phys I 2:771–790

    Google Scholar 

  23. Levitz P, Pasquier V, Cousin I (1997) In: McEnamey B et al (eds) Characterization of porous solid IV. The Royal Society of Chemistry, London, pp 213–220

  24. Bale HD, Schmidt PW (1984) Small-angle x-ray-scattering investigation of submicroscopic porosity with fractal properties. Phys Rev Lett 53:596–599

    Google Scholar 

  25. Pellenq RJ-M, Rodts S, Pasquier V, Delville A, Levitz P (2000) A grand canonical Monte-Carlo simulation study of xenon adsorption in a vycor-like porous matrix. Adsorption 6:241–249

    Google Scholar 

  26. Fratzl P, Schreiber S, Klaushofer K (1996) Bone and. mineralization as studied by small-angle X-ray scattering. Connect Tissues Res 34:247–254

    Google Scholar 

  27. Coleman M (1965) . J Appl Prob 2:169–177

    Google Scholar 

  28. Lin C, Cohen MH (1994) J Appl Phys 59:328–339

    Google Scholar 

  29. Joshi MY (1974) A class of stochastic models for porous media. PhD thesis, University of Kansas, Lawrence, KS

  30. Adler PM, Jacquin CG, Quiblier JA (1990) Flow in simulated porous media. Int J Multiphase Flow (1990) 16:691

    Google Scholar 

  31. Levitz P, Pasquier V, Cousin I (1997) In: McEnamey B et al (ed) Characterisation of porous solid IV. The Royal Society of Chemistry, pp 133–140

  32. Levitz P (1998) Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport. Adv Colloid Interface Sci 76–77:71–106

    Google Scholar 

  33. Rintoul M, Torquado S (1997) J Colloid Interface Sci 186:467

    Google Scholar 

Three-dimensional image-based characterisation of porous media: application to bone micro-architecture

  1. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11

    Google Scholar 

  2. Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tiss Int 58(1):24–29

    Google Scholar 

  3. Salome M, Peyrin F, Cloetens P, Odet C, Laval-Jeantet AM, Baruchel B, Spanne P (1999) A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Med Phys 26(10):2194–2204

    Google Scholar 

  4. Elmoutaouakkil A, Peyrin F, Elkafi J, Laval-Jeantet AM (2002) Segmentation of cancellous bone from high-resolution computed tomography images: influence on trabecular bone measurements. IEEE Trans Med Imaging 21(4):354–362

    Google Scholar 

  5. Hara T, Tanck E, Homminga J, Huiskes R (2002) The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31(1):107–109

    Google Scholar 

  6. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–328

    Google Scholar 

  7. Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1989) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72:1396–1409

    Google Scholar 

  8. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610

    Google Scholar 

  9. Hipp JA, Simmons CA (1997) Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone. J Bone Miner Res 12(6):942–947

    Google Scholar 

  10. Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101(2):153–168

    Google Scholar 

  11. Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Google Scholar 

  12. Martin-Badosa E, Elmoutaouakkil A, Nuzzo S, Amblard D, Vico L, Peyrin F (2003) A method for the automatic characterization of bone architecture in 3D mice microtomographic images. Comput Med Imaging Graph 27(6):447–458

    Google Scholar 

  13. Matawari T, Miura H, Higaki H, Kurata K, MuraKami T, Iwamoto Y (1997) Quantitative analysis of three-dimensional complexity and connectivity changes in trabecular architecture in relation with ageing and menopause. Med Biol Eng Comput 35(supp part I):214

  14. Odgaard A, Gundersen HJG (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3D reconstructions. Bone 14:173–182

    Google Scholar 

  15. Pothuaud L, Porion P, Lespessailles E, Benhamou CL, Levitz P (2000) A new method for three-dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture. J Microsc 199(Pt 2):149–161

    Google Scholar 

  16. Gomberg BG, Saha K, Song HK, Hwang SN, Wehrli FW (2000) Application of topological analysis to magnetic resonance images of human trabecular bone. IEEE Trans Med Imaging 19(3):166–174

    Google Scholar 

  17. Laib A, Rüegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23(2):69–74

    Google Scholar 

  18. Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23

    Google Scholar 

  19. Peyrin F, Bonnassie A, Attali D, Elmoutaouakkil A, Martin-Badosa E (2003) Measurements of 3D local shape features from three-dimensional high resolution bone images. IEEE Trans SMC 33(4):700–705

    Google Scholar 

  20. Stauber M, Rapillard L, van Lenthe GH, Zysset P, Muller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 21(4):586–595

    Google Scholar 

The role of bone microarchitecture in skeletal fragility

  1. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:58–69

    Google Scholar 

  2. Parfitt AM, Mathews CHE, Villanueva AR, Kleerehoper M, Frame B, Rao DS (1983) Relationship between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanism of bone loss. J Clin Invest 72: 1396–1409

    Google Scholar 

  3. Van der Linden JC, Homminga J, Verhaar JAN, Weinans H (2001) Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 16:457–465

    Google Scholar 

  4. Aaron JE, Makins NB, Sagreiy K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Rela Res 215:260–271

    Google Scholar 

  5. Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone 27:277–282

    Google Scholar 

  6. Brown JP, Delmas PD, Arlot M, Meunier PJ (1987) Active bone turnover of the cortico-endosteal envelope in postmenopausal osteoporosis. J Clin Endocrinol Metab 64:954–959

    Google Scholar 

  7. Balena R, Shih M-S, Parfitt (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 7:1475–1482

  8. Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323

    Google Scholar 

  9. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after the menopause. N Engl J Med 349:327–334

    Google Scholar 

  10. Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in Homo. 1: temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Google Scholar 

  11. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) A population-based study of age and sex differences in bone volumetric density, size, geometry and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Google Scholar 

  12. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 10:13–17

    Google Scholar 

  13. Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dimorphism in vertebral fragility is more the results of gender differences in bone gain than bone loss. J Bone Miner Res 16:2267–2275

    Google Scholar 

  14. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Pierre D, Delmas PDD (2005) Identification of osteopenic women at high risk of fracture: The OFELY Study. J Bone Miner Res 20:1929–1943

    Google Scholar 

  15. Boutroy S, Bouxsein ML, Munoz F, Delmas PDD (2005) In vivo assessment of trabecular microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Google Scholar 

  16. Delmas PD (2000) How does antiresorptive therapy decrease the risk of fracture in women with osteoporosis? Bone 27:1–3

    Google Scholar 

  17. Borah B, Dufresne TE, Chmielewski PA, Johnson TD, Chines A, Manhart MD (2004) Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34:736–46

    Google Scholar 

Relationship between microarchitecture and bone strength: structural modelization of bone tissue

  1. Alexander JM, Bab I, Fish S, Müller R, Uchiyama T, Gronowicz G, Nahounou M, Zhao Q, White DW, Chorev M, Gazit D, Rosenblatt M (2001) Human parathyroid hormone [hPTH-(1–34)] reverses bone loss in ovariectomized mice. J Bone Miner Res 16:1665–1673

    Google Scholar 

  2. Bay BK (1995) Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone. J Orthop Res 13:258–267

    Google Scholar 

  3. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Min Res 4:3–11

    Google Scholar 

  4. Hildebrand T, Müller R, Laib A, Dequeker J, Rüegsegger P (1999) Direct 3-D morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Google Scholar 

  5. Müller R, Rüegsegger P (1997) Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. In: Lowet G et al (ed) Bone research in biomechanics. IOS Press, Amsterdam, pp 61–79

  6. Müller R, Hannan MK, Smith SY, Bauss F (2004) Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res 19:1787–1796

    Google Scholar 

  7. Müller R, Bösch T, Jarak D, Stauber M, Nazarian A, Tantillo M, Boyd S (2002) Micro-mechanical evaluation of bone microstructures under load. In: Bonse U (ed) Developments in X-ray tomography III, SPIE vol 4503, pp 189–200

  8. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Google Scholar 

  9. Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tiss Int 58:24–29

    Google Scholar 

  10. Stampanoni M, Wyss P, Abela R, Borchert GL, Vermeulen D, Rüegsegger P (2002) X-ray tomographic microscopy at the Swiss light source. In: Bonse U (ed) Developments in X-ray tomography III, SPIE vol 4503, pp 42–53

  11. Stauber M, Rapillard L, Zysset Ph, Müller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 21:586–595

  12. Turner CH, Hsieh YF, Müller R, Bouxsein ML, Baylink DJ, Rosen CJ, Grynpas MD, Donahue LR, Beamer W (2000) Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res 15:1126–1131

    Google Scholar 

Micro-finite element analysis for the assessment of bone mechanical properties: from in vitro to in vivo applications

  1. Rüegsegger P (1996) Bone density measurements. In: Broll S, Dambacher S (eds) Osteoporosis: a guide to diagnosis and treatment. Karger, Basel

  2. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25(1):55–60

    Google Scholar 

  3. van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Google Scholar 

  4. Kabel J, van Rietbergen B, Odgaard A, Huiskes R (1999) Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25(4):481–6

    Google Scholar 

  5. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–8

    Google Scholar 

  6. van Rietbergen B, Majumdar S, Newitt D, MacDonald B (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon) 17(2):81–8

    Google Scholar 

  7. David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexandre C, Ruegsegger P, Vico L (2003) Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res 18(9):1622–31

    Google Scholar 

  8. Sprecher CM, Gisep A, Milz S, Haupt U, Yen K, Heini P (2006) Morphological changes during 42 months of PMMA vertebroplasty: a case study. Eur Cells Mater 11(Suppl 1):59

    Google Scholar 

  9. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P (2004) Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside. J Clin Densitom 7(2):153–60

    Google Scholar 

  10. Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM (2004) The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng 126(6):677–84

    Google Scholar 

Characterization of bone microarchitecture by MRI in vitro and in vivo

  1. Siris ES, Brenneman SK, Barrett-Connor E, Miller PD, Sajjan S, Berger ML, Chen YT (2006) The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporos Int 17:565–574

    Google Scholar 

  2. Riggs BL, Melton LJ 3rd (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Google Scholar 

  3. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190

    Google Scholar 

  4. Chung H, Wehrli FW, Williams JL, Kugelmass SD (1993) Relationship between NMR transverse relaxation, trabecular bone architecture and strength. Proc Natl Acad Sci 90:10250–10254

    Google Scholar 

  5. Chung HW, Wehrli FW, Williams JL, Wehrli SL (1995) Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 10:1452–1461

    Google Scholar 

  6. Ma J, Wehrli FW, Song HK (1996) Fast 3D large-angle spin-echo imaging (3D FLASE). Magn Reson Med 35:903–910

    Google Scholar 

  7. Song HK, Wehrli FW (1999) In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis. Magn Reson Med 41:947–953

    Google Scholar 

  8. Vasilic B, Song H, Wehrli F (2004) Coherence induced artifacts in large-flip-angle steady-state spin-echo imaging. Magn Reson Med 52:346–353

    Google Scholar 

  9. Wehrli FW, Hwang SN, Ma J, Song HK, Ford JC, Haddad JG (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357, erratum Radiology 207(3):833

    Google Scholar 

  10. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Google Scholar 

  11. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227:708–717

    Google Scholar 

  12. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314

    Google Scholar 

  13. Vasilic B, Ladinsky GA, Saha PK, Wehrli FW (2006) Micro-MRI-based image acquisition and processing system for assessing the response to therapeutic intervention. In: Proc SPIE. SPIE, San Diego, CA

  14. Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276

    Google Scholar 

  15. Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13:278–287

    Google Scholar 

  16. Chung HW, Wehrli FW, Williams JL, Kugelmass SD, Wehrli SL (1995) Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res 10:803–811

    Google Scholar 

  17. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong V-H, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone, mineral density, and osteoporotic status: in vivo studies in the distal radius using high-resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Google Scholar 

  18. Hwang SN, Wehrli FW (1999) Estimating voxel volume fractions of trabecular bone on the basis of magnetic resonance images acquired in vivo. Int J Imaging Syst Technol 10:186–198

    Google Scholar 

  19. Vasilic B, Wehrli FW (2005) A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in-vivo MRI. IEEE Trans Med Imaging 24:1574–1585

    Google Scholar 

  20. Hwang SN, Wehrli FW (2002) Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Medicine 47:948–957

    Google Scholar 

  21. Maunder CRF (1980) Algebraic topology. Cambridge Univ. Press, Cambridge

  22. Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Google Scholar 

  23. Kleerekoper M, Villanueva AR, Stanciu J, Sudhaker Rao D, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Google Scholar 

  24. Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Arch Phys Med Surg 96:379–394

    Google Scholar 

  25. Majumdar S, Newitt D, Jergas M, Gies A, Chiu E, Osman D, Keltner J, Keyak J, Genant H (1995) Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 17:417–430

    Google Scholar 

  26. Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    Google Scholar 

  27. Hildebrand T, Rüegsegger P (1997) a new method for the model independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Google Scholar 

  28. Laib A, Newitt DC, Lu Y, Majumdar S (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136

    Google Scholar 

  29. Saha PK, Gomberg B, Wehrli FW (2003) Fuzzy distance transform: theory, algorithms and applications. Comput Vis Image Underst 86:171–190

    Google Scholar 

  30. Saha P, Wehrli F (2004) Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans Med Imag 23:53–62

    Google Scholar 

  31. Takahashi M, Wehrli FW, Hilaire L, Zemel BS, Hwang SN (2002) In vivo NMR microscopy allows short-term serial assessment of multiple skeletal implications of corticosteroid exposure. Proc Natl Acad Sci U S A 19:19

    Google Scholar 

  32. Boyce RW, Ebert DC, Youngs TA, Paddock CL, Mosekilde L, Stevens ML, Gundersen HJ (1995) Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized minipigs. Bone 16:637–642

    Google Scholar 

  33. Amling M, Posl M, Ritzel H, Hahn M, Vogel M, Wening VJ, Delling G (1996) Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens. Arch Orthop Trauma Surg 115:262–269

    Google Scholar 

  34. Kinney JH, Ladd AJC (1998) The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J Bone Miner Res 13:839–845

    Google Scholar 

  35. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Google Scholar 

  36. Saha PK, Chaudhuri BB (1996) 3D digital topology under binary transformation with applications. Comput Vis Image Underst 63:418–429

    Google Scholar 

  37. Gomberg BG, Saha PK, Song HK, Hwang SN, Wehrli FW (2000) Application of topological analysis to magnetic resonance images of human trabecular bone. IEEE Trans Med Imag 19:166–174

    Google Scholar 

  38. Saha PK, Gomberg BR, Wehrli FW (2000) Three-dimensional digital topological characterization of cancellous bone architecture. Int J Imaging Syst Technol 11:81–90

    Google Scholar 

  39. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

  40. Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101:153–168

    Google Scholar 

  41. Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Google Scholar 

  42. Mosekilde L (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner 10:13–35

    Google Scholar 

  43. Ciarelli TE, Fyhrie, DP, Schaffler, MB, Goldstein, SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40

    Google Scholar 

  44. Hwang SN, Wehrli FW, Williams JL (1997) Probability-based structural parameters from 3D NMR images as predictors of trabecular bone strength. Med Phys 24:1255–1261

    Google Scholar 

  45. Wald MJ, Vasilic B, Saha PK, Wehrli FW (2005) Study of trabecular bone microstructure using spatial autocorrelation analysis. In: Proc SPIE Int Soc Opt Eng, San Diego, p 291

  46. Link TM, Majumdar, S, Augat, P, Lin, JC, Newitt, D, Lu, Y, Lane, NE, Genant, HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

  47. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    Google Scholar 

  48. van Rietbergen B, Majumdar S, Newitt D, MacDonald B (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon) 17:81–88

    Google Scholar 

  49. Pothuaud L, Newitt DC, Lu Y, MacDonald B, Majumdar S (2004) In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure. Osteoporos Int 15:411–419

    Google Scholar 

  50. Ladinsky GA, Vasilic B, Popescu AM, Zemel B, Wright AC, Song HK, Saha PK, Peachy H, Snyder PK, Wehrli FW (2005) MRI based virtual bone biopsy detects large one-year changes in trabecular bone architecture of early postmenopausal women. In: ASBMR, 27th Annual Meeting. ASBMR, Nashville, p S15

  51. Chesnut CH 3rd, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L (2005) Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res 20:1548–1561

    Google Scholar 

  52. Benito M, Vasilic B, Wehrli FW, Bunker B, Wald M, Gomberg B, Wright AC, Zemel B, Cucchiara A, Snyder PJ (2005) Effect of testosterone replacement on bone architecture in hypogonadal men. J Bone Miner Res 20:1785

    Google Scholar 

  53. Hruska KA, Teitelbaum SL (1995) Renal osteodystrophy [see comments]. N Engl J Med 333:166–174

    Google Scholar 

  54. Malluche HH, Monier-Faugere MC (1994) The role of bone biopsy in the management of patients with renal osteodystrophy [editorial]. J Am Soc Nephrol 4:1631–1642

    Google Scholar 

  55. Wehrli FW, Leonard MB, Saha PK, Gomberg BG (2004) Quantitative high-resolution MRI reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20:83–89

    Google Scholar 

Can ultrasound measure bone microstructure?

  1. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Google Scholar 

  2. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Google Scholar 

  3. Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, Laugier P (2006) Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT. Phys Med Biol 51:733–746

    Google Scholar 

  4. Padilla F, Peyrin F, Laugier P (2003) Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. J Acoust Soc Am 113:1122–1129

    Google Scholar 

  5. Fellah ZE, Chapelon JY, Berger S, Lauriks W, Depollier C (2004) Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J Acoust Soc Am 116:61–73

    Google Scholar 

  6. Gluer CC, Eastell R, Reid DM, Felsenber D, Roux C, Barkman R, Timm W, Blenk T, Armbrecht G, Stewart A, Clowes J, Thomasius FE, Kolta S (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 19:782–793, Epub 2004 Mar 2001

    Google Scholar 

  7. Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareha, N, Oakes S, Day N (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC–Norfolk prospective population study. Lancet 363:197–202

    Google Scholar 

  8. Stewart A, Kumar V, Reid DM (2006) Long-term fracture prediction by DXA and QUS: a 10-year prospective study. J Bone Miner Res 21:413–418, Epub 2005 Dec 2019

    Google Scholar 

  9. Han SM, Rho JY (1998) Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone. Proc Inst Mech Eng H 212:223–227

    Google Scholar 

  10. Nicholson PH, Müller R, Lowet G, Cheng XG, Hildebrand T, Rüegseger P, van der Perre G, Dequeker J, Boonen S (1998) Do quantitative ultrasound measurement reflect structure independently of density in human vertebral cancellous bone. Bone 23:425–431

    Google Scholar 

  11. Chaffai S, Peyrin F, Nuzzo S, Porcher R, Berger G, Laugier P (2002) Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 30:229–237

    Google Scholar 

  12. Hans D, Wu C, Njeh CF, Zhao S, Augat P, Newitt D, Link T, Lu Y, Majumdar S, Genant HK (1999) Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 64:18–23

    Google Scholar 

  13. Nicholson PH, Muller R, Cheng XG, Ruegsegger P, Van Der Perre G, Dequeker J, Boonen S (2001) Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 16:1886–1892

    Google Scholar 

  14. Bossy E, Padilla F, Peyrin F, Laugier P (2005) Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys Med Biol 50(23):5545–5556

    Google Scholar 

  15. Jenson F, Padilla F, Bousson V, Bergot C, Laredo JD, Laugier P (2006) In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. J Acoust Soc Am 119:654–663

    Google Scholar 

  16. Wear K, Stuber A, Reynolds JC (2000) Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus. Ultrasound Med Biol 26:1311–1316

    Google Scholar 

  17. Roux C, Roberjot V, Porcher R, Kolta S, Dougados M, Laugier P (2001) Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis. J Bone Miner Res 16:1353–1362

    Google Scholar 

  18. Wear KA, Garra BS (1998) Assessment of bone density using ultrasonic backscatter. Ultrasound Med Biol 24:689–695

    Google Scholar 

  19. Wear K (1999) Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment. J Acoust Soc Am 106:3659–3664

    Google Scholar 

  20. Padilla F, Jenson F, Laugier P (2006) Estimation of trabecular thickness using ultrasonic backscatter. Ultrasonic Imaging 28(1):41–42

    Google Scholar 

  21. Jenson F, Padilla F, Laugier P (2003) Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med Biol 29:455–464

    Google Scholar 

  22. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Google Scholar 

  23. Zioupos P (2001) Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc 201: 270–278

    Google Scholar 

  24. Nicholson PH, Bouxsein ML (2000) Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J Bone Miner Res 15:2467–2472

    Google Scholar 

  25. Muller M, Sutin A, Guyer R, Talmant M, Laugier P, Johnson PA (2005) Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J Acoust Soc Am 118:3946–3952

    Google Scholar 

  26. Glüer CC, Barkmann R (2003) Quantitative ultrasound: use in the detection of fractures and in the assessment of bone composition. Curr Osteoporos Rep 1:98–104

    Google Scholar 

Histomorphometry in the evaluation of trabecular microarchitecture

  1. Parfitt AM, Matthews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Google Scholar 

  2. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Simon Y, Rhomer V, Baslé MF, Audran M (2000) Trabecular bone microarchitecture, bone mineral density and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    Google Scholar 

  3. Compston JE (1994) Connectivity of cancellous bone: assessment and mechanical implications. Bone 15:463–466

    Google Scholar 

  4. Chappard D, Legrand E, Pascaretti C, Audran M, Baslé MF (1999) Comparison of eight histomorphometric methods for measuring trabecular bone architecture by image analysis on histological sections. Microsc Res Tech 45:303–312

    Google Scholar 

  5. Vesterby A (1993) Star volume in bone research: a histomorphometric analysis of trabecular bone structure using vertical sections. Anat Rec 235:325–334

    Google Scholar 

  6. Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696

    Google Scholar 

  7. Tabor Z (2003) Simulated aging—a novel method for estimating the risk of fracture of trabecular bone. Bone 33:229–236

    Google Scholar 

  8. Chappard D, Legrand E, Haettich B, Chalès G, Auvinet B, Eschard JP, Hamelin JP, Baslé MF, Audran M (2001) Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity. J Pathol 195:515–521

    Google Scholar 

  9. Barbier A, Martel C, de Vernejoul MC, Tirode F, Nys M, Mocaer G, Morieux C, Murakami H, Lacheretz F (1999) The visualization and evaluation of bone architecture in the rat using three-dimensional X-ray microcomputed tomography. J Bone Miner Metab 17:37–44

    Google Scholar 

  10. Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20:1177–1184

    Google Scholar 

Texture analysis on bone radiographs

  1. No authors listed (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Google Scholar 

  2. Cortet B, Dubois P, Boutry N, Bourel P, Cotten A, Marchandise X (1999) Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int. 9:410–419

    Google Scholar 

  3. Ito M, Ohki M, Hayashi K, Hayashi K, Yamada M, Uetani M, Nakamura T (1995) Trabecular texture analysis in the relationship with spinal fracture. Radiology 194:55–59

    Google Scholar 

  4. Caligiuri P, Giger ML, Favus MJ, Jia H, Doi K, Dixon LB (1993) Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186:471–474

    Google Scholar 

  5. Korstjens CM, Geraets WGM, Van Ginkel FC, Prahl-Andersen B, van der Stelt PF, Burger EH (1995) Longitudinal analysis of radiographic trabecular pattern by image processing. Bone 17:527–532

    Google Scholar 

  6. Geraets WGM, van der Stelt PF, Lips P, Van Ginkel FC (1998) The radiographic trabecular pattern of hips in patients with hip fractures and in elderly control subjects. Bone 22:165–173

    Google Scholar 

  7. Geraets WGM, van der Stelt PF, Lips P, Elders PJ, van Ginkel FC, Burger EH (1997) Orientation of the trabecular pattern of the distal radius around the menopause. J Biomech 30:363–370

    Google Scholar 

  8. Geraets WGM (1998) Comparison of two methods for measuring orientation. Bone 23:383–388

    Google Scholar 

  9. Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert R (1999) Relationship between plain radiographic patterns and three-dimensional trabecular architecture in the human calcaneus. Osteoporosis Int 9:339–345

    Google Scholar 

  10. Sevestre-Ghalila S, Benazza-Benyahia, Ricordeau A, Mellouli N, Chappard C, Benhamou CL (2004) Texture image analysis for osteoporosis detection with morphological tools. Lect Notes Comput Sci 3216:87–94

  11. Sevestre-Ghalila S, Benazza-Benyahia A, Ricordeau A, Mellouli N, Chappard C, Benhamou CL (2005) Texture image analysis for osteoporosis detection with morphological tools. NIAMS–ASBMR Scientific Meeting—Bone Quality: What is it and can we measure it? May 2–3, 2005, Bethesda, Maryland, USA

  12. Lundhal T, Ohley WJ, Kay SM, Siffert R (1986) Fractional Brownian motion: a maximum likelihood estimator and its application to image texture. IEEE Trans Med Imag 5:152–161

    Google Scholar 

  13. Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W (1994) Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 9:1909–1918

    Google Scholar 

  14. Maragos P, Sun FK (1993) Measuring the fractal dimension of signals: Morphological covers and iterative optimization. IEEE Trans Signal Proc 41:108–121

    Google Scholar 

  15. Pentland AP (1984) Fractal -based description of natural scenes. IEEE Trans Pattern Anal Mach Intell Pami 6:661–674

    Google Scholar 

  16. Buckland-Wright JC, Lynch JA, Rymer J, Fogelman I (1994) Fractal signature analysis of macroradiographs measures trabecular organization in lumbar vertebrae of postmenopausal women. Calcif Tissue Int 54:106–112

    Google Scholar 

  17. Lespessailles E, Jacquet G, Harba R, Loussot T, Viala JF, Benhamou CL (1996) Anisotropy measurement obtained by fractal analysis of trabecular bone at the calcaneus and radius. Rev Rhum (Engl Ed) 63:337–343

    Google Scholar 

  18. Hans D, Dargent Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 24:511–514

    Google Scholar 

  19. Rackoff PJ, Rosen CJ (1998) Peripheral bone mass measurements: current and future perspectives on quantitative ultrasound and peripheral DXA. J Clin Densitom 1:287–294

    Google Scholar 

  20. Lespessailles E, Jullien A, Eynard E, Harba R, Jacquet G, Ildefonse JP, Ohley W, Benhamou CL (1998) Biomechanical properties of human os calcanei relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 31:817–824

    Google Scholar 

  21. Caldwell B, Rosson J, Surowiak J, Hearn T (1994) Use of the fractal dimension to characterize the structure of cancellous bone in radiographs of the proximal femur. In: Nonnenmacher TF, Losa GA, Weibel ER (eds) Fractals in biology and medicine. Birkhaüser, Basel, pp 300–306

  22. Khosrovi PM, Kahn AJ, Genant HK, Majumdar S (1994) Characterization of trabecular bone structure from radiographs using fractal analysis (abstract). J Bone Miner Res 9S156

  23. Caligiuri P, Giger ML, Favus M (1994) Multifractal radiographic analysis of osteoporosis. Med Phys 21:503–508

    Google Scholar 

  24. Lin JC, Grampp S, Link T, Kothari M, Newitt DC, Felsenberg D, Majumdar S (1999) Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 9:516–524

    Google Scholar 

  25. Majumdar S, Link TM, Millard J, Lin JC, Augat P, Newitt D, Lane N, Genant HK (2000) In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 27:2594–2599

    Google Scholar 

  26. Lespessailles E, Gadois C, Lemineur G, Do-Huu JP, Benhamou CL (2006) Reproducibility of bone texture analysis on radiographic images obtained with direct digitization. 6th European Congress on Clinical and Economical Aspects of Osteoporosis and Osteoarthritis, Vienne (Autriche). Osteoporosis International 17(suppl 1), P220

  27. Lespessailles E, Roux JP, Benhamou CL, Arlot ME, Eynard E, Harba R, Padonou C, Meunier JP (1998) Fractal analysis of trabecular bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry. Calcif Tissue Int 63:121–125

    Google Scholar 

  28. Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 15:691–699

    Google Scholar 

  29. Bonami A, Estrade A (2003) Anisotropic analysis of some Gaussian models. J Fourier Anal Appl 9:215–236

    Google Scholar 

  30. Jennane R, Harba R, Lemineur G, Bretteil S, Estrade A, Benhamou CL (2007) Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection. Med Image Anal 11(1):91–98

    Google Scholar 

  31. Pothuaud L, Lespessailles E, Harba R et al (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporosis Int 8:618–625

    Google Scholar 

  32. Benhamou CL, Poupon S, Lespessailles E, Lespessailles E, Loiseau S, Jennane R, Siroux V, Pothuaud L (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16:697–704

    Google Scholar 

  33. Benhamou CL, Gadois C, Lemineur G, Do-Huu JP, Lespessailles E (2006) Bone texture analysis on calcaneus digitized radiographic images: discriminant value in osteoporosis. 6th European Congress on Clinical and Economical Aspects of Osteoporosis and Osteoarthritis, Vienne (Autriche). Osteoporosis International 17(suppl 1), P376, Mar 2006

  34. Lespessailles E, Poupon S, Niamane R, Loiseau-Peres S, Derommelaere G, Harba R, Pothuaud L, Benhamou CL (2002) Fractal analysis of trabecular bone texture on calcaneus radiographs: effects of age, time since menopause and hormonal replacement therapy on microarchitectural changes. Osteoporos Int 13:366–372

    Google Scholar 

  35. Lespessailles E, Siroux V, Andriambelosoa N, Pothuaud L, Harba R, Benhamou CL (2000) Long-term corticosteroid therapy induce mild changes in trabecular bone texture. J Bone Miner Res 15:747–753

    Google Scholar 

  36. Prouteau S, Ducher G, Nanyan P, Lemineur G, Benhamou L, Courteix D (2004) Fractal analysis of bone texture: a screening tool for stress fracture risk? Eur J Clin Invest 34:137–142

    Google Scholar 

  37. Benhamou CL, Chappard C, Gadois C, Lespessailles E, de Vernejoul M, Fardellone P, Delmas P, Wehrya G, Harba R (2004) Characterization of trabecular micro-architecture improvement under teriparatide by a fractal analysis of texture on calcaneus radiographs. J Bone Miner Res 19:126–SA113

    Google Scholar 

  38. Chappard C, Brunet-Imbault B, Lemineur G, Giraudeau B, Basillais A, Benhamou CL (2005) Anisotropy changes in post-menopausal osteoporosis: characterization by a New Index applied to trabecular bone radiographic images. Osteoporos Int 16:1193–1202

    Google Scholar 

QCT, pQCT, microCT, and bone architecture

  1. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE et al (1995) Risk factors for hip fracture in white women. N Engl J Med 332:767–773

    Google Scholar 

  2. Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fractures. Osteoporos Int 5:252–261

    Google Scholar 

  3. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A et al (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108

    Google Scholar 

  4. Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imag 22:586–598

    Google Scholar 

  5. Kang Y, Engelke K, Kalender WA (2004) Interactive 3D editing tools for image segmentation. Med Image Anal 8:35–46

    Google Scholar 

  6. Kang Y, Engelke K, Fuchs C, Kalender WA (2005) An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 29:533–541

    Google Scholar 

  7. Li W, Sode M, Saeed I, Lang T (2006) Automated registration of hip and spine longitudinal QCT studies: integration with 3D densitometric and structural analysis. Bone 38:273–279

    Google Scholar 

  8. Cann CE, Genant HK (1980) Precise measurements of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500

    Google Scholar 

  9. Kalender WA, Suess C (1987) A new calibration phantom for quantitative computed tomography. Med Phys 14:863–866

    Google Scholar 

  10. Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    Google Scholar 

  11. Guglielmi G, Lang TF (2002) Quantitative computed tomography. Semin Musculoskelet Radiol 6:219–227

    Google Scholar 

  12. Feretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18:97–102

    Google Scholar 

  13. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363

    Google Scholar 

  14. Riggs BL, Melton LJI, Robb RA, Camp JJ, Atkinson EJ, Peterson JM et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Google Scholar 

  15. Riggs BL, Melton LJI, Robb RA, Camp JJ, Atkinson EJ, Oberg AL et al (2006) Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res 21:315–323

    Google Scholar 

  16. Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A et al (2006) Structural adaptations to bone loss in aging men and women. Bone 38:112–118

    Google Scholar 

  17. Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M et al (2003) Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18:539–543

    Google Scholar 

  18. Bousson V, Peyrin F, Bergot C, Hausard M, Sautet A, Laredo J-D (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19:794–801

    Google Scholar 

  19. Boyd SK, Davidson P, Muller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39(4):854–62

    Google Scholar 

  20. Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV et al (2004) Teriparatide [PTH(1–34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res 19:623–629

    Google Scholar 

  21. Gauthier O, Muller R, Von Stechow D, Lamy B, Weiss P, Bouler JM et al (2005) In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26:5444–5453

    Google Scholar 

  22. Jiang Y, Zhao J, White DL, Genant HK (2000) MicroCT and microMR imaging of 3D architecture of animal skeleton. J Musculoskelet Neuronal Interact 1:45–51

    Google Scholar 

  23. Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part II—Nonlinear analysis. J Biomech Eng 113:361–365

    Google Scholar 

  24. Ulrich D, Rietbergen B, Laib A, Ruegsegger P (1998) Mechanical analysis of bone and its microarchitecture based on in vivo voxel images. Technol Health Care 6:421–427

    Google Scholar 

  25. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB (2005) Predicting proximal femoral strength using structural engineering models. Clin Orthop 437:219–228

    Google Scholar 

  26. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Google Scholar 

  27. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Google Scholar 

  28. Cody DD, Divine GW, Nahigian K, Kleerekoper M (2000) Bone density distribution and gender dominate femoral neck fracture risk predictors. Skeletal Radiol 29:151–161

    Google Scholar 

  29. Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18:1781–1788

    Google Scholar 

  30. Lian KC, Lang TF, Keyak JH, Modin GW, Rehman Q, Do L et al (2005) Differences in hip quantitative computed tomography (QCT) measurements of bone mineral density and bone strength between glucocorticoid-treated and glucocorticoid-naive postmenopausal women. Osteoporos Int 16:642–650

    Google Scholar 

  31. Phillips SK, Woledge RC, Bruce SA, Young A, Levy D, Yeo A et al (1998) A study of force and cross-sectional area of adductor pollicis muscle in female hip fracture patients. J Am Geriatr Soc 46:999–1002

    Google Scholar 

  32. Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV (2005) Identification of high-risk individuals for hip fracture: a 14-year prospective study. J Bone Miner Res 20:1921–1928

    Google Scholar 

  33. Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1997) Relationship of spinal fracture to bone density, textural, and anthropometric parameters. Calcif Tissue Int 60:240–244

    Google Scholar 

  34. Ferretti J, Capozza RF, Cointry GR, Capiglioni R, Roldan EJ, Zanchetta JR (2000) Densitometric and tomographic analyses of musculoskeletal interactions in humans. J Musculoskelet Neuronal Interact 1:31–34

    Google Scholar 

Relationships between bone remodeling and microarchitecture

  1. Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30(1):5–7

    Google Scholar 

  2. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21(2):115–1137

    Google Scholar 

  3. Recker R, Lappe J, Davies KM, Heaney R (2004) Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 19(10):1628–1633

    Google Scholar 

  4. Recker RR, Barger-Lux MJ (2004) The elusive concept of bone quality. Curr Osteoporos Rep 2(3):97–100

    Google Scholar 

  5. Weinstein RS (2000) True strength. J Bone Miner Res 15(4):621–625

    Google Scholar 

  6. Heaney RP (2003) Is the paradigm shifting? Bone 33(4):457–465

    Google Scholar 

  7. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Google Scholar 

  8. Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporosis Int 14(3):S2–S8

    Google Scholar 

  9. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20(2):177–184

    Google Scholar 

  10. Borah B, Dufresne TE, Chmielewski PA, Johnson TD, Chines A, Manhart MD (2004) Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34(4):736–746

    Google Scholar 

  11. Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, Rodan G, Wehren L, Kimmel D (2005) Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 21(2):185–194

    Google Scholar 

  12. Rodan GA, Balena R (1993) Bisphosphonates in the treatment of metabolic bone diseases. Ann Med 25(4):373–378

    Google Scholar 

  13. Reginster J, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, Lund B, Ethgen D, Pack S, Roumagnac I, Eastell R (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11(1):83–91

    Google Scholar 

  14. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB (2001) Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 28(5):524–531

    Google Scholar 

  15. Li J, Mashiba T, Burr DB (2001) Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage. Calcif Tissue Int 69(5):281–286

    Google Scholar 

  16. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 10;344(19):1434–1441

    Google Scholar 

  17. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18(11):1932–1941

    Google Scholar 

  18. Arlot M, Meunier PJ, Boivin G, Haddock L, Tamayo J, Correa-Rotter R, Jasqui S, Donley DW, Dalsky GP, Martin JS, Eriksen EF (2005) Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res 20(7):1244–1253

    Google Scholar 

  19. Marie PJ (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int 16:7–10

    Google Scholar 

  20. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    Google Scholar 

  21. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468

    Google Scholar 

Bone microarchitecture assessment: influence of menopause, aging, corticosteroids use and osteoporosis

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 14(285):785–795

    Google Scholar 

  2. Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Raos DS (1983) Relationship between surface volume and thickness of iliac trabecular bone in aging and in osteoporosis: Implication for the microanatomic and cellular mechanism of bone loss. J Clin Invest 72:1396–1409

    Google Scholar 

  3. Compston JE, Mellish RWE, Garrahan NJ (1987) Age-related changes in iliac crest trabecular micro-anatomic bone in man. Bone 8:289–312

    Google Scholar 

  4. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor A new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Google Scholar 

  5. Vesterby A, Gundersen HJG, Melsen F (1989) Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 10:7–13

    Google Scholar 

  6. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Google Scholar 

  7. Lespessailles E, Chappard C, Bonnet N, Bénhamou CL (2006) Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine 73:254–61

    Google Scholar 

  8. Compston JE (1994) Connetivity of cancellous bone. Assessment and mechanical implications. Bone 15:463–466

    Google Scholar 

  9. Croucher PI, Garrahan NJ, Compston JE (1996) Assessment of cancellous bone structure: comparison of strut analysis trabecular bone pattern factor and marrow space star volume. J Bone Miner Res 7:955–961

    Google Scholar 

  10. Le HM, Holmes RE, Shors E, Rosenstein DA (1992) Computerized quantitative analysis of the interconnectivity of porous biomaterials. Acta Stereol 11S1:267–272

    Google Scholar 

  11. Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourlière D, Ohley WY (1994) Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 9:1909–1918

    Google Scholar 

  12. Cortet B, Colin D, Dubois P, Delcambre B, Marchandise X (1995) Methods for quantitative analysis of trabecular bone structure. Rev Rhum (Engl Ed) 62:781–793

    Google Scholar 

  13. Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Three-dimensional histology. Bone 27:277–282

    Google Scholar 

  14. Durand EP, Rueegsegger P (1991) Cancellous bone structure: analysis of high resolution CT images with the run length method. J Comput Assis Tomogr 15:133–139

    Google Scholar 

  15. Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1995) Trabecular texture analysis in the relationship with spinal fracture. Radiology 194:55–59

    Google Scholar 

  16. Cortet B, Bourel P, Dubois P, Boutry N, Cotten A, Marchandise X (1998) CT scan texture analysis of the distal radius: influence of age and menopausal status. Rev Rhum (Engl Ed) 65:109–118

    Google Scholar 

  17. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong V-H Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Google Scholar 

  18. Ladinsky GA, Vasilic B, Popescu AM, Zemel B, Wright AC, Song HK, Saha PK, Peachy H, Snyder PJ, Wehrli FW (2005) MRI based virtual bone biopsy detects large one-year changes in trabecular bone architecture for early postmenopausal women. J Bone Miner Res 20(suppl 1):S15

    Google Scholar 

  19. Hordon LD, Raisi M, Aaron JE, Paxton SK, Beneton M, Kanis JA (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27:271–276

    Google Scholar 

  20. Chevalier F, Laval-Jeantet AM, Laval-Jeantet M, Bergot C (1992) CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51:8–13

    Google Scholar 

  21. Gordon CL, Webber CE, Christoforou N, Nahmias C (1997) In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images. Med Phys 24:585–593

    Google Scholar 

  22. Müller R, Hahn M, Vogel M, Delling G, Rüegsegger P (1996) Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18:215–220

    Google Scholar 

  23. Cortet B, Dubois P, Boutry N, Cotten A, Marchandise X (1999) Image analysis of the distal radius trabecular network using computed tomography. Osteoporosos Int 9:410–419

    Google Scholar 

  24. Zouch M, Gernay B, Thomas T, Vico L, Alexandre C (2005) Patients with hip fracture exhibit bone micro-architectural deterioration compared to patients with Colles’s fracture as assessed with in vivo high resolution 3D micro-pQCT. European advanced detection of bone quality (ADOQ) study. J Bone Miner Res 20(suppl 1):S45

    Google Scholar 

  25. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) Non invasive measurement of trabecular architecture by 3D-pQCT discriminates osteopenic women with and without fractures. J Bone Miner Res 20(suppl 1):S91

    Google Scholar 

  26. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Google Scholar 

  27. Majumdar S, Link T, Augat P, Lin J, Newitt D, Lane N, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–229

    Google Scholar 

  28. Cortet B, Dubois P, Boutry N, Varlet E, Cotten A, Marchandise X (2000) Does high resolution computed tomography image analysis of the distal radius provide informations independent of bone mass. J Clin Densitom 3:339–351

    Google Scholar 

  29. Chappard D, Legrand E, Basle MF, Fromont P, Racineux JL, Rebel A, Audran M (1996) Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res 11:676–685

    Google Scholar 

  30. Dalle Carbonare L, Arlot ME, Chavassieux PM, Roux JP, Portero N, Meunier PJ (2001) Comparison of trabecular bone microarchitecture and remodeling in glucocorticoid-induced and postmenopausal osteoporosis. J Bone Miner Res 16:97–103

    Google Scholar 

  31. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V et al (2000) Trabecular bone microarchitecture, bone mineral density and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    Google Scholar 

  32. Cortet B, Dubois P, Boutry N, Palos G, Cotten A, Marchandise X (2002) Computed tomography image analysis of the calcaneus in male osteoporosis. Osteoporos Int 13:33–41

    Google Scholar 

  33. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227(3):708–717

    Google Scholar 

  34. Benito M, Gomberg B, Wehrli FW, Weening RH, Zemel B, Wright AC, Kwon Song H, Cucchiara A, Snyder PJ (2003) Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 88:1497–1502

    Google Scholar 

  35. Cortet B, Chappard D, Boutry N, Dubois P, Cotten A, Marchandise X (2004) Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus. Calcif Tissue Int 75:23–31

    Google Scholar 

  36. Boutry N, Cortet B, Chappard D, Dubois P, Demondion X, Marchandise X, Cotten A (2004) Bone structure of the calcaneus: analysis with magnetic resonance imaging and correlation with histomorphometric study. Osteoporos Int 15:827–833

    Google Scholar 

Effects of osteoporosis treatments on bone microarchitecture

  1. Müller R, van Lenthe GH (2004) Microarchitectural aspects of bone quality and competence of bone. Adv Osteoporotic Fract Manag 3:2–12

    Google Scholar 

  2. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Google Scholar 

  3. Khosla S, Melton LJ 3rd, Achenbach SJ, Oberg AL, Riggs BL (2006) Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab 91:885–91

    Google Scholar 

  4. Zouch B, Gerbay T, Thomas L, Vico C, Alexandre (2005) In vivo 3D architectural analysis showed differences in patients with Colle’s and femoral neck fractures (ADOQ Study). J Bone Miner Res 20(Suppl1):S305

  5. Borah B, Dufresne TE, Chmielewski PA, Gross GJ, Prenger MC, Phipps RJ (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J Bone Miner Res 17:1139–1147

    Google Scholar 

  6. Barou O, Lafage-Proust MH, Martel C, Thomas T, Tirode F, Laroche N, Barbier A, Alexandre C, Vico L (1999) Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses. J Pharmacol Exp Ther 291:321–328

    Google Scholar 

  7. Ding M, Day JS, Burr DB, Mashiba T, Hirano T, Weinans H, Sumner DR, Hvid I (2003) Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif Tissue Int 72:737–744

    Google Scholar 

  8. Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T (2000) Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J Bone Miner Res 15:541–549

    Google Scholar 

  9. Dufresne TE, Chmielewski PA, Manhart MD, Johnson TD, Borah B (2003) Risedronate preserves bone architecture in early postmenopausal women in 1 year as measured by three-dimensional microcomputed tomography. Calcif Tissue Int 73:423–432

    Google Scholar 

  10. Borah B, Dufresne TE, Chmielewski PA, Johnson TD, Chines A, Manhart MD (2004) Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34:736–46

    Google Scholar 

  11. Borah B, Dufresne TE, Ritman EL, Jorgensen SM, Liu S, Chmielewski PA, Phipps RJ, Zhou X, Sibonga JD, Turner RT (2006) Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39:345–352

    Google Scholar 

  12. Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 17:1372–1382

    Google Scholar 

  13. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18:1051–1056

    Google Scholar 

  14. Kostenuik PJ, Paul C, Smith S, Asuncion F, Atkinson J (2004) The RANKL antagonist OPG-Fc causes significantly increases in cortical bone mineral area, content and density in adult cynomolgus monkeys. J Bone Miner Res 19(Suppl1):S19

    Google Scholar 

  15. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OL, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FJ, Potts JT Jr (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J 280:1340–1344

    Google Scholar 

  16. Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV, Vahle J, Brommage R, Jerome CP, Turner CH (2004) Teriparatide [PTH(1–34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res 19:623–629

    Google Scholar 

  17. Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R (2001) Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28:150–159

    Google Scholar 

  18. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Google Scholar 

  19. Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M, Gaich GA, Dalsky GP, Myers SL (2003) Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18:539–543

    Google Scholar 

  20. Bain S, Shen V, Zheng H, Liu C, Hara P, Dupin-Roger I (2003) Long-term treatment with strontium ranelate increases histomorphometry indices of bone formation in ovariectomized rats. J Bone Miner Res 18(suppl 2):S277

    Google Scholar 

  21. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

First meeting on bone quality, Abbaye des Vaux de Cernay, France, 15–16 June 2006: Bone architecture. Osteoporos Int 18, 837–889 (2007). https://doi.org/10.1007/s00198-007-0366-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0366-4

Navigation