Skip to main content

Advertisement

Log in

The association of bone mineral density measures with incident cardiovascular disease in older adults

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The associations of volumetric and areal bone mineral density (BMD) measures with incident cardiovascular disease (CVD) were studied in a biracial cohort of 2,310 older adults. BMD measures were inversely related to CVD in women and white men, independent of age and shared risk factors for osteoporosis and CVD.

Introduction

We investigated the associations of volumetric (vBMD) and areal (aBMD) bone mineral density measures with incident cardiovascular disease (CVD) in older adults enrolled in the Health, Aging, and Body Composition study.

Methods

The incidence of CVD was ascertained in 2,310 well-functioning white and black participants (42% black; 55% women), aged 68–80 years. aBMD measures of the hip were assessed using DXA. Spine trabecular, integral, and cortical vBMD measures were obtained using QCT.

Results

During an average follow-up of 5.4 years, 23% of men and 14% of women had incident CVD. Spine vBMD measures were inversely associated with incident CVD in white men [HR(integral)=1.39, 95% CI 1.03–1.87; HR(cortical)=1.38, 95% CI 1.03–1.84], but not in black men. In women, aBMD measures of the total hip (HR = 1.36, 95% CI 1.03–1.78), femoral neck (HR = 1.44, 95% CI 1.10–1.90), and trochanter (HR = 1.34, 95% CI 1.04–1.72) exhibited significant associations with CVD in blacks, but not in whites. All associations were independent of age and shared risk factors between osteoporosis and CVD, and were not explained by inflammatory cytokines or oxidized LDL.

Conclusion

Our results provide support for an inverse association between BMD and incident CVD. Further research should elucidate possible pathophysiological mechanisms linking osteoporosis and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93:2393–2402

    PubMed  CAS  Google Scholar 

  2. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    PubMed  CAS  Google Scholar 

  3. Schmid K, McSharry WO, Pameijer CH, Binette JP (1980) Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37:199–210

    Article  PubMed  CAS  Google Scholar 

  4. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696

    Article  PubMed  CAS  Google Scholar 

  5. Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ, Tordoir JH, Spronk HM, Vermeer C, Daemen MJ (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003

    PubMed  CAS  Google Scholar 

  6. Kado DM, Browner WS, Blackwell T, Gore R, Cummings SR (2000) Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res 15:1974–1980

    Article  PubMed  CAS  Google Scholar 

  7. Browner WS, Seeley DG, Vogt TM, Cummings SR (1991) Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 338:355–358

    Article  PubMed  CAS  Google Scholar 

  8. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Article  PubMed  Google Scholar 

  9. Mussolino ME, Madans JH, Gillum RF (2003) Bone mineral density and mortality in women and men: the NHANES I epidemiologic follow-up study. Ann Epidemiol 13:692–697

    Article  PubMed  Google Scholar 

  10. Trivedi DP, Khaw KT (2001) Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int 12:259–265

    Article  PubMed  CAS  Google Scholar 

  11. Farhat GN, Strotmeyer ES, Newman AB, Sutton-Tyrrell K, Bauer DC, Harris TB, Johnson KC, Taaffe DR, Cauley JA (2006) Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 79:102–111

    Article  PubMed  CAS  Google Scholar 

  12. Tanko L, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  PubMed  Google Scholar 

  13. Marcovitz PA, Tran HH, Franklin BA, O’Neill WW, Yerkey M, Boura J, Kleerekoper M, Dickinson CZ (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96:1059–1063

    Article  PubMed  Google Scholar 

  14. Magnus JH, Broussard DL (2005) Relationship between bone mineral density and myocardial infarction in US adults. Osteoporos Int 16:2053–2062

    Article  PubMed  Google Scholar 

  15. Samelson EJ, Kiel DP, Broe KE, Zhang Y, Cupples LA, Hannan MT, Wilson PW, Levy D, Williams SA, Vaccarino V (2004) Metacarpal cortical area and risk of coronary heart disease: the Framingham Study. Am J Epidemiol 159:589–595

    Article  PubMed  Google Scholar 

  16. Jorgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32:47–51

    PubMed  CAS  Google Scholar 

  17. Browner WS, Pressman AR, Nevitt MC, Cauley JA, Cummings SR (1993) Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke 24:940–946

    PubMed  CAS  Google Scholar 

  18. Laroche M, Pouilles JM, Ribot C, Bendayan P, Bernard J, Boccalon H, Mazieres B (1994) Comparison of the bone mineral content of the lower limbs in men with ischaemic atherosclerotic disease. Clin Rheumatol 13:611–614

    Article  PubMed  CAS  Google Scholar 

  19. Wong SYS, Kwok T, Woo J, Lynn H, Griffith JF, Leung J, Tang YYN, Leung PC (2005) Bone mineral density and the risk of peripheral arterial disease in men and women: results from the Mr. and Ms. Os, Hong Kong. Osteoporos Int 16:1933–1938

    Article  PubMed  CAS  Google Scholar 

  20. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253

    Article  PubMed  CAS  Google Scholar 

  21. Tanko LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20

    Article  PubMed  CAS  Google Scholar 

  22. Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PW (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68:271–276

    Article  PubMed  CAS  Google Scholar 

  23. Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20:1926–1931

    PubMed  CAS  Google Scholar 

  24. Barengolts EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV (1998) Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 62:209–213

    Article  PubMed  CAS  Google Scholar 

  25. Jorgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160:549–556

    Article  PubMed  Google Scholar 

  26. Hirose K, Tomiyama H, Okazaki R, Arai T, Koji Y, Zaydun G, Hori S, Yamashina A (2003) Increased pulse wave velocity associated with reduced calcaneal quantitative osteo-sono index: possible relationship between atherosclerosis and osteopenia. J Clin Endocrinol Metab 88:2573–2578

    Article  PubMed  CAS  Google Scholar 

  27. Sanada M, Taguchi A, Higashi Y, Tsuda M, Kodama I, Yoshizumi M, Ohama K (2004) Forearm endothelial function and bone mineral loss in postmenopausal women. Atherosclerosis 176:387–392

    Article  PubMed  CAS  Google Scholar 

  28. Pahor M, Chrischilles EA, Guralnik JM (1994) Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 10:405–411

    Article  PubMed  CAS  Google Scholar 

  29. Simonsick EM, Newman AB, Nevitt MC, Kritchevsky SB, Ferrucci L, Guralnik JM, Harris TB (2001) Measuring higher level physical function in well-functioning older adults: Expanding familiar approaches in the Health ABC Study. J Gerontol Med Sci 56:644–649

    Google Scholar 

  30. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  PubMed  CAS  Google Scholar 

  31. Looker AC, Orwoll ES, Johnston CC, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of Low Femoral Bone Density in Older U.S. Adults from NHANES III*. JBMR 12:1761–1768

    Article  CAS  Google Scholar 

  32. Arnold AM, Psaty BM, Kuller LH, Burke GL, Manolio TA, Fried L, Robbins JA, Kronmal RA (2005) Incidence of cardiovascular disease in older Americans: the Cardiovascular Health Study. JAGS 53:211–218

    Article  Google Scholar 

  33. Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699

    Article  PubMed  CAS  Google Scholar 

  34. Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP (1998) The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med 128:127–137

    PubMed  CAS  Google Scholar 

  35. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Tracy RP, Rubin SM, Harris TB, Pahor M (2003) Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am J Cardiol 92:522–528

    Article  PubMed  CAS  Google Scholar 

  36. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Rubin SM, Ding J, Simonsick EM, Harris TB, Pahor M (2003) Inflammatory markers and onset of cardiovascular events. Results from the health ABC study. Circulation 108:2317–2322

    Article  PubMed  CAS  Google Scholar 

  37. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  38. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687

    PubMed  CAS  Google Scholar 

  39. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    PubMed  CAS  Google Scholar 

  40. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    Article  PubMed  Google Scholar 

  41. Moon J, Bandy B, Davison AJ (1992) Hypothesis: etiology of atherosclerosis and osteoporosis: are imbalances in the calciferol endocrine system implicated? J Am Coll Nutr 11:567–583

    PubMed  CAS  Google Scholar 

  42. Jie KG, Bots ML, Vermeer C, Witteman JC, Grobbee DE (1996) Vitamin K status and bone mass in women with and without aortic atherosclerosis: a population-based study. Calcif Tissue Int 59:352–356

    Article  PubMed  CAS  Google Scholar 

  43. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karestny G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  PubMed  CAS  Google Scholar 

  44. Bagger YZ, Tanko L, Alexandersen P, Qin G, Christiansen C (2006) Radiographic measure of aorta calcification is a site-specific predictor of bone loss an dfracture risk at the hip. J Intern Med 259:598–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Institute on Aging (NIA) contract numbers N01-AG-6-2101, N01-AG-6-2103, N01-AG-6-2106, and 5-T32-AG00181. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging.

Conflict of interest statement

Dr. Cauley received support from Merck & Company, Eli Lilly & Company, Pfizer Pharmaceuticals, and Novartis Pharmaceuticals. She received an honorarium from Merck & Company and Novartis and served as a speaker for Merck & Company. All other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. N. Farhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhat, G.N., Newman, A.B., Sutton-Tyrrell, K. et al. The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos Int 18, 999–1008 (2007). https://doi.org/10.1007/s00198-007-0338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0338-8

Keywords

Navigation