Skip to main content

Comparison of dried plum supplementation and intermittent PTH in restoring bone in osteopenic orchidectomized rats

Abstract

Summary

Bone loss was confirmed after 90 days in 50 6-month-old male Sprague Dawley rats that were sham-operated or orchidectomized (ORX). In this study, we have shown that dried plum (DP) has potent effects on bone in terms of bone mass, microarchitecture, and strength in osteopenic male rats. Although these changes may be mediated through the suppression of bone resorption, the fact that the restoration in some of the bone structural and biomechanical parameter shares some similarities with parathyroid hormone (PTH) should not be overlooked. Further investigation is needed on a mechanistic level to clarify the influence of DP on bone metabolism.

Introduction

This study was designed to investigate the extent to which DP reverses bone loss in osteopenic ORX rats and to compare its effects to PTH.

Materials and methods

Fifty, 6-month-old male Sprague Dawley rats were sham-operated or ORX, and bone loss was confirmed after 90 days. The ORX groups were assigned to control (AIN-93M) diet, 25% DP diet, or PTH (80 μg/kg) for 90 days.

Results

DP induced an 11% increase in vertebral and femoral BMD compared to ORX-controls. BMD in the PTH-treated group was increased by 20.7% (vertebra) and 17.9% (femur). Vertebral trabecular bone volume (BV/TV) and number were increased by DP and trabecular separation was decreased compared to controls, which were similar to PTH. Alterations in trabecular bone of the femur were similar to those in the vertebra, but DP did not restore BV/TV to the same extent. Cortical thickness was improved by DP and further enhanced by PTH. DP tended to decrease urinary deoxypyridinoline and calcium, but did not alter alkaline phosphatase or osteocalcin.

Conclusion

We conclude that though the degree of improvement was not equivalent to PTH with regard to all parameters, DP reverses bone loss due to ORX and the mechanisms should be further investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Kurland ES, Cosman F, McMahon DJ et al (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85(9):3069–3076

    PubMed  Article  CAS  Google Scholar 

  2. Behre HM, Kliesch S, Leifke E et al (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82(8):2386–2390

    PubMed  Article  CAS  Google Scholar 

  3. Orwoll E, Ettinger M, Weiss S et al (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343(9):604–610

    PubMed  Article  CAS  Google Scholar 

  4. Shimon I, Eshed V, Doolman R et al (2005) Alendronate for osteoporosis in men with androgen-repleted hypogonadism. Osteoporos Int 16(12):1591–1596

    PubMed  Article  CAS  Google Scholar 

  5. Venken K, Boonen S, Van Herck E et al (2005) Bone and muscle protective potential of the prostate-sparing synthetic androgen 7 alpha-methyl-19-nortestosterone: evidence from the aged orchidectomized male rat model. Bone 36(4):663–670

    PubMed  Article  CAS  Google Scholar 

  6. Iwamoto J, Takeda T, Katsumata T et al (2002) Effect of etidronate on bone in orchidectomized and sciatic neurectomized adult rats. Bone 30(2):360–367

    PubMed  Article  CAS  Google Scholar 

  7. Huuskonen J, Arnala I, Olkkonen H et al (2001) Alendronate influences bending force of femoral diaphysis after orchidectomy in rats. Ann Chir Gynaecol 90(2):109–114

    PubMed  CAS  Google Scholar 

  8. Gabet Y, Kohavi D, Muller R et al (2005) Intermittently administered parathyroid hormone 1–34 reverses bone loss and structural impairment in orchiectomized adult rats. Osteoporos Int 16(11):1436–1443

    PubMed  Article  CAS  Google Scholar 

  9. Khalil DA, Lucas EA, Smith BJ et al (2002) Soy protein supplementation increase serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr 132(9):2605–2608

    PubMed  CAS  Google Scholar 

  10. Lips P, Graafmans WC, Ooms ME et al (1996) Vitamin D supplementation and fracture incidence in elderly persons-A randomized, placebo-controlled clinical trial. Ann Intern Med 124(4):400–406

    PubMed  CAS  Google Scholar 

  11. Dawson-Hughes B, Harris SS, Krall EA et al (1997) Effect of calcium and vitamin D supplementation on bone, density in men and women 65 years of age or older. N Engl J Med 337(10):670–676

    PubMed  Article  CAS  Google Scholar 

  12. Dobnig H (2004) A review of teriparatide and its clinical efficacy in the treatment of osteoporosis. Expert Opin Pharmacother 5(5):1153–1162

    PubMed  Article  CAS  Google Scholar 

  13. Peacock M, Liu G, Carey M et al (2000) Effect of calcium or 25OH vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60. J Clin Endocrinol Metab 85(9):3011–3019

    PubMed  Article  CAS  Google Scholar 

  14. Trivedi DP, Doll R, Khaw KT (2003) Effect of four monthly oral vitamin D-3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. Brit Med J 326(7387):469–472

    PubMed  Article  CAS  Google Scholar 

  15. Khalil DA, Lucas EA, Smith BJ et al (2005) Soy isoflavones may protect against orchidectomy-induced bone loss in aged male rats. Calcif Tissue Int 76(1):56–62

    PubMed  Article  CAS  Google Scholar 

  16. Deyhim F, Stoecker BJ, Brusewitz GH et al (2005) Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause 12(6):755–762

    PubMed  Article  Google Scholar 

  17. Muhlbauer RC, Lozano A, Reinli A et al (2003) Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr 133(11):3592–3597

    PubMed  Google Scholar 

  18. Franklin M, Bu SY, Lerner MR et al (2006) Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone 39(6):1331–1342

    PubMed  Article  CAS  Google Scholar 

  19. Soung DY, Devareddy L, Khalil DA et al (2006) Soy affects trabecular microarchitecture and favorably alters select bone-specific gene expressions in a male rat model of osteoporosis. Calcif Tissue Int 78(6):385–391

    PubMed  Article  CAS  Google Scholar 

  20. Arjmandi BH, Khalil DA, Lucas EA et al (2002) Dried plums improve indices of bone formation in postmenopausal women. J Women's Health Gend Based Med 11(1):61–68

    Article  Google Scholar 

  21. Arjmandi BH, Lucas EA, Juma S et al (2001) Prune prevents ovariectomy-induced bone loss in rats. JANA 4(1):50–56

    Google Scholar 

  22. Stacewicz-Sapuntzakis M, Bowen PE, Hussain EA et al (2001) Chemical composition and potential health effects of prunes: a functional food? Crit Rev Food Sci Nutr 41(4):251–286

    PubMed  Article  CAS  Google Scholar 

  23. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing on the reformation of the AIN-76 rodent diet. J Nutr 123(11):1939–1951

    PubMed  CAS  Google Scholar 

  24. Kostenuik PJ, Capparelli C, Morony S et al (2001) OPG and PTH-(1–34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology 142(10):4295–4304

    PubMed  Article  CAS  Google Scholar 

  25. Akhter MP, Kimmel DB, Recker RR (2001) Effect of parathyroid hormone (hPTH[1–84]) treatment on bone mass and strength in ovariectomized rats. J Clin Densitom 4(1):13–23

    PubMed  Article  CAS  Google Scholar 

  26. Sugihara A, Yamada N, Tsujimura T et al (2001) Castration induces apoptosis in the male accessory sex organs of Fas-deficient lpr and Fas ligand-deficient gld mutant mice. In Vivo 15(5):385–390

    PubMed  CAS  Google Scholar 

  27. Kabel J, van Rietbergen B, Dalstra M et al (1999) The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Journal of Biomechanics 32(7):673–680

    PubMed  Article  CAS  Google Scholar 

  28. Newitt DC, Majumdar S, van Rietbergen B et al (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13(1):6–17

    PubMed  Article  CAS  Google Scholar 

  29. van Rietbergen B, Odgaard A, Kabel J et al (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29(12):1653–1657

    PubMed  Article  Google Scholar 

  30. Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182(1):50–68

    PubMed  CAS  Article  Google Scholar 

  31. Lemann J (1999) Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review. Nephron 81(Suppl 1):18–25

    PubMed  Article  CAS  Google Scholar 

  32. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18

    PubMed  Google Scholar 

  33. Wang L, Banu J, McMahan CA et al (2001) Male rodent model of age-related bone loss in men. Bone 29(2):141–148

    PubMed  Article  CAS  Google Scholar 

  34. Katznelson L, Finkelstein JS, Schoenfeld DA et al (1996) Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 81(12):4358–4365

    PubMed  Article  CAS  Google Scholar 

  35. Audran M, Chappard D, Legrand E et al (2001) Bone microarchitecture and bone fragility in men: DXA and histomorphometry in humans and in the orchidectomized rat model. Calcif Tissue Int 69(4):214–217

    PubMed  Article  CAS  Google Scholar 

  36. Fanti O, Monier-Faugere MC, Geng Z et al (1998) The phytoestrogen genistein reduces bone loss in short-term overiectomized rats. Osteoporos Int 8(3):274–281

    PubMed  Article  CAS  Google Scholar 

  37. Devareddy L, Khalil DA, Smith BJ et al (2006) Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 38(5):686–693

    PubMed  Article  CAS  Google Scholar 

  38. Legrand E, Chappard D, Pascaretti C et al (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15(1):13–19

    PubMed  Article  CAS  Google Scholar 

  39. Iwamoto J, Takeda T, Ichimura S (2004) Differential effect of short-term etidronate treatment on three cancellous bone sites in orchidectomized adult rats. Keio J Med 53(1):12–17

    PubMed  Article  CAS  Google Scholar 

  40. Moriyama I, Iwamoto J, Takeda T et al (2005) Comparative effects of intermittent administration of human parathyroid hormone (1–34) on cancellous and cortical bone loss in tail-suspended and sciatic neurectomized young rats. J Orthop Sci 7(3):379–385

    Article  Google Scholar 

  41. Wang L, Orhii PB, Banu J et al (2001) Effects of separate and combined therapy with growth hormone and parathyroid hormone on lumbar vertebral bone in aged ovariectomized osteopenic rats. Bone 28(2):202–207

    PubMed  Article  CAS  Google Scholar 

  42. Hernandez CJ, Beaupre GS, Marcus R et al (2001) A theoretical analysis of the contributions of remodeling space, mineralization, and bone balance to changes in bone mineral density during alendronate treatment. Bone 29(6):511–516

    PubMed  Article  CAS  Google Scholar 

  43. Miyazaki T, Matsunaga T, Miyazaki S et al (2004) Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats. J Cell Biochem 93(3):503–512

    PubMed  Article  CAS  Google Scholar 

  44. Woo JT, Nakagawa H, Notoya M et al (2004) Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 27(4):504–509

    PubMed  Article  CAS  Google Scholar 

  45. Horcajada-Molteni MN, Crespy V, Coxam V et al (2000) Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res 15(11):2251–2258

    PubMed  Article  CAS  Google Scholar 

  46. Mizutani K, Ikeda K, Kawai Y et al (1998) Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 253(3):859–863

    PubMed  Article  CAS  Google Scholar 

  47. Macdonald HM, New SA, Fraser WD et al (2005) Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81(4):923–933

    PubMed  CAS  Google Scholar 

  48. Sebastian A, Harris ST, Ottaway JH et al (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330(25):1776–1781

    PubMed  Article  CAS  Google Scholar 

  49. Koshihara Y, Hoshi K, Okawara R et al (2003) Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture. J Endocrinol 176(3):339–348

    PubMed  Article  CAS  Google Scholar 

  50. Inoue T, Sugiyama T, Matsubara T et al (2001) Inverse correlation between the changes of lumbar bone mineral density and serum undercarboxylated osteocalcin after vitamin K-2 (menatetrenone) treatment in children treated with glucocorticoid and alfacalcidol. Endocr J 48(1):11–18

    PubMed  CAS  Google Scholar 

  51. Vermeer C, Wolf J, Craciun AM et al (1998) Bone markers during a 6-month space flight: effects of vitamin K supplementation. J Gravit Physiol 5(2):65–69

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the California Dried Plum Board for supplying dried plum powder for animal diet. This study was supported by USDA grant (#2003-00901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bu, S.Y., Lucas, E.A., Franklin, M. et al. Comparison of dried plum supplementation and intermittent PTH in restoring bone in osteopenic orchidectomized rats. Osteoporos Int 18, 931–942 (2007). https://doi.org/10.1007/s00198-007-0335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0335-y

Keywords

  • Bone
  • Functional food
  • Male
  • Osteoporosis
  • Parathyroid hormone (PTH)
  • Prune