Osteoporosis International

, Volume 18, Issue 2, pp 201–210 | Cite as

Potential for bone turnover markers to cost-effectively identify and select post-menopausal osteopenic women at high risk of fracture for bisphosphonate therapy

  • J. T. Schousboe
  • D. C. Bauer
  • J. A. Nyman
  • R. L. Kane
  • L. J. Melton
  • K. E. Ensrud
Original Article


Introduction and hypothesis

Over half of all fractures among post-menopausal women occur in those who do not have osteoporosis by bone density criteria. Measurement of bone turnover may cost-effectively identify a subset of women with T-score >−2.5 for whom anti-resorptive drug therapy is cost-effective.


Using a Markov model, we estimated the cost per quality adjusted life year (QALY) for five years of oral bisphosphonate compared to no drug therapy for osteopenic post-menopausal women aged 60 to 80 years with a high (top quartile) or low (bottom 3 quartiles) level of a bone turnover marker.


For women with high bone turnover, the cost per QALY gained with alendronate compared to no drug therapy among women aged 70 years with T-scores of −2.0 or −1.5 were $58,000 and $80,000 (U.S. 2004 dollars), respectively. If bisphosphonates therapy also reduced the risk of non-vertebral fractures by 20% among osteopenic women with high bone turnover, then the costs per QALY gained were $34,000 and $50,000 for women age 70 with high bone turnover and T-scores of −2.0 and −1.5, respectively.


Measurement of bone turnover markers has the potential to identify a subset of post-menopausal women without osteoporosis by bone density criteria for whom bisphosphonate therapy to prevent fracture is cost-effective. The size of that subset highly depends on the assumed efficacy of bisphosphonates for fracture risk reduction among women with both a T-score >−2.5 and high bone turnover and the cost of bisphosphonate treatment.


Bisphosphonates Bone turnover Cost-effectiveness Non-vertebral fracture Vertebral fracture 


  1. 1.
    Melton LJ III (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18(6):1139–1141PubMedCrossRefGoogle Scholar
  2. 2.
    Black DM, Thompson DE, Bauer DC et al (2000) Fracture risk reduction with alendronate in women with osteoporosis: the fracture intervention trial. FIT Research Group. J Clin Endocrinol Metab 85(11):4118–4124PubMedCrossRefGoogle Scholar
  3. 3.
    Wainwright SA, Marshall LM, Ensrud KE et al (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90(5):2787–2793PubMedCrossRefGoogle Scholar
  4. 4.
    Siris ES, Miller PD, Barrett-Connor E et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286(22):2815–2822PubMedCrossRefGoogle Scholar
  5. 5.
    Schousboe JT, Nyman JA, Kane RL et al (2005) Cost-effectiveness of alendronate therapy for osteopenic postmenopausal women. Ann Intern Med 142(9):734–741PubMedGoogle Scholar
  6. 6.
    Ross PD, Kress BC, Parson RE, Wasnich RD et al (2000) Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int 11(1):76–82PubMedCrossRefGoogle Scholar
  7. 7.
    Robbins JA, Schott AM, Garnero P et al (2005) Risk factors for hip fracture in women with high BMD: EPIDOS study. Osteoporos Int 16(2):149–154PubMedCrossRefGoogle Scholar
  8. 8.
    Chapurlat RD, Garnero P, Breart G et al (2000) Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone 27(2):283–286PubMedCrossRefGoogle Scholar
  9. 9.
    Garnero P, Hausherr E, Chapuy MC et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11(10):1531–1538PubMedGoogle Scholar
  10. 10.
    Garnero P, Sornay-Rendu E, Claustrat B et al (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15(8):1526–1536. Aug 2000PubMedCrossRefGoogle Scholar
  11. 11.
    Gerdhem P, Ivaska KK, Alatalo SL et al (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19(3):386–393PubMedCrossRefGoogle Scholar
  12. 12.
    Sonnenberg FA, Beck JR (1993) Markov models in medical decision making: a practical guide. Med Decis Making 13(4):322–338PubMedCrossRefGoogle Scholar
  13. 13.
    Melton LJ III, Crowson CS, O’Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int 9(1):29–37PubMedCrossRefGoogle Scholar
  14. 14.
    Melton LJ III (1996) History of the Rochester epidemiology project. Mayo Clin Proc 71(3):266–274PubMedCrossRefGoogle Scholar
  15. 15.
    De Laet CE, van Hout BA, Burger H et al (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315(7102):221–225PubMedGoogle Scholar
  16. 16.
    Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8(5):468–489PubMedCrossRefGoogle Scholar
  17. 17.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259PubMedGoogle Scholar
  18. 18.
    Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14(5):821–828PubMedCrossRefGoogle Scholar
  19. 19.
    Melton LJ III, Ilstrup DM, Beckenbaugh RD et al (1982) Hip fracture recurrence. A population-based study. Clin Orthop 167:131–138PubMedGoogle Scholar
  20. 20.
    Cuddihy MT, Gabriel SE, Crowson CS et al Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int 9(6):469–475Google Scholar
  21. 21.
    Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA 280(24):2077–2082PubMedCrossRefGoogle Scholar
  22. 22.
    Quandt SA, Thompson DE, Schneider DL et al (2005) Effect of alendronate on vertebral fracture risk in women with bone mineral density T scores of−1.6 to −2.5 at the femoral neck: the fracture intervention trial. Mayo Clin Proc 80(3):343–349PubMedCrossRefGoogle Scholar
  23. 23.
    Bauer DC, Garnero P, Hochberg MC et al (2006) Pre-treatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res 21(2):292–299PubMedCrossRefGoogle Scholar
  24. 24.
    Tosteson AN, Jonsson B, Grima DT et al (2001) Challenges for model-based economic evaluations of postmenopausal osteoporosis interventions. Osteoporos Int 12(10):849–857PubMedCrossRefGoogle Scholar
  25. 25.
    United States Life Tables for 1999 (2002) National Vital Statistics Report 50(6):17–18Google Scholar
  26. 26.
    Kanis JA, Oden A, Johnell O et al (2003) The components of excess mortality after hip fracture 32(5):468–473Google Scholar
  27. 27.
    Johnell O, Kanis JA, Oden A et al (2004) Mortality after osteoporotic fractures. Osteoporos Int 15(1):38–42PubMedCrossRefGoogle Scholar
  28. 28.
    Kanis JA, Johnell O, Oden A et al (2004) The risk and burden of vertebral fractures in Sweden. Osteoporos Int 15(1):20–26. JanPubMedCrossRefGoogle Scholar
  29. 29.
    Drug Topics 2001 Red Book (2001) Montvale, Medical Economics Co, New JerseyGoogle Scholar
  30. 30.
    Gabriel SE, Tosteson AN, Leibson CL et al (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13(4):323–330PubMedCrossRefGoogle Scholar
  31. 31.
    Centers for Medicare and Medicaid Services. Available at: http://cms.hhs.gov/providers/pufdownload/rvudown.asp. Accessed August 12, 2003
  32. 32.
    Leibson CL, Tosteson AN, Gabriel SE et al (2002) Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc 50(10):1644–1650PubMedCrossRefGoogle Scholar
  33. 33.
    Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey. Available at: http://www.meps.ahrq.gov/. Accessed August 12, 2003
  34. 34.
    Meerding WJ, Looman CW, Essink-Bot ML et al (2004) Distribution and determinants of health and work status in a comprehensive population of injury patients. J Trauma 56(1):150–161PubMedGoogle Scholar
  35. 35.
    U.S. Census Bureau, Bureau of Labor Statistics. CPS Annual Demographic Survey. Available at: http://ferret.bls.census.gov/macro/032002/perinc/new05_000.htm. Accessed May 28, 2004
  36. 36.
    U.S. Census Bureau. Workforce Participation Rates. Available at: http://factfinder.census.gov/home/saff/main.html?_lang=en. Accessed May 28, 2004
  37. 37.
    Oleksik A, Lips P, Dawson A et al (2000) Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J Bone Miner Res 15(7):1384–1392PubMedCrossRefGoogle Scholar
  38. 38.
    Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128(10):793–800PubMedGoogle Scholar
  39. 39.
    Huang C, Ross PD, Wasnich RD (1996) Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med 156(21):2469–2475PubMedCrossRefGoogle Scholar
  40. 40.
    Tosteson AN, Gabriel SE, Grove MR et al (2001) Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos Int 12(12):1042–1049PubMedCrossRefGoogle Scholar
  41. 41.
    Melton LJ, Chrischilles EA, Cooper C et al (1992) Perspective: how many women have osteoporosis? J Bone Miner Res 7:1005–1010PubMedCrossRefGoogle Scholar
  42. 42.
    Schousboe JT, Ensrud KE, Nyman JA et al (2005) Potential cost-effective use of spine radiographs to detect vertebral deformity and select osteopenic post-menopausal women for amino-bisphosphonate therapy. Osteoporos Int 16(12):1883–1893PubMedCrossRefGoogle Scholar
  43. 43.
    Bjarnason NH, Sarkar S, Duong T et al (2001) Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int 12(11):922–930PubMedCrossRefGoogle Scholar
  44. 44.
    Eastell R, Barton I, Hannon RA et al (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18(6):1051–1056PubMedCrossRefGoogle Scholar
  45. 45.
    Johannesson M, Meltzer D (1998) Some reflections on cost-effectiveness analysis. Health Economics 7:1–7PubMedCrossRefGoogle Scholar
  46. 46.
    Ubel PA, Hirth RA, Chernew ME et al (2003) What is the price of life and why doesn’t it increase at the rate of inflation? Arch Intern Med 163(14):1637–1641PubMedCrossRefGoogle Scholar
  47. 47.
    Macran S, Weatherly H, Kind P (2003) Measuring population health: a comparison of three generic health status measures. Med Care 41(2):218–231PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2006

Authors and Affiliations

  • J. T. Schousboe
    • 1
    • 2
  • D. C. Bauer
    • 3
  • J. A. Nyman
    • 2
  • R. L. Kane
    • 2
    • 4
  • L. J. Melton
    • 5
  • K. E. Ensrud
    • 6
    • 7
  1. 1.Park Nicollet Health ServicesMinneapolisUSA
  2. 2.Division of Health Services Research and Policy, School of Public HealthUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Medicine, Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoUSA
  4. 4.Clinical Outcomes Research CenterUniversity of MinnesotaMinneapolisUSA
  5. 5.Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterUSA
  6. 6.Department of MedicineMinneapolis VAMCMinneapolisUSA
  7. 7.Division of Epidemiology, School of Public HealthUniversity of MinnesotaMinneapolisUSA

Personalised recommendations