Osteoporosis International

, Volume 18, Issue 1, pp 109–115 | Cite as

Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women

  • L. G. RaoEmail author
  • E. S. Mackinnon
  • R. G. Josse
  • T. M. Murray
  • A. Strauss
  • A. V. Rao
Original Article



Oxidative stress induced by reactive oxygen species (ROS) is associated with the risk of osteoporosis, and can be reduced by certain dietary antioxidants. Lycopene is an antioxidant known to decrease the risk of age-related chronic diseases, such as cancer. However, the role of lycopene in osteoporosis has not yet been investigated.

Materials and methods

In a cross-sectional study, 33 postmenopausal women aged 50–60 years provided seven-day dietary records and blood samples. Serum samples were used to measure serum lycopene, lipid peroxidation, protein thiols, bone alkaline phosphatase (BAP), and cross-linked N-telopeptides of type I collagen (NTx). The serum lycopene per kilogram body weight of the participants was grouped into quartiles and associated with the above serum parameters using one-way ANOVA and the Newman-Keuls post-test.


The results showed that groups with higher lycopene intake, as determined from the dietary records, had higher serum lycopene (p<0.02). A higher serum lycopene was found to be associated with a low NTx (p<0.005). Similarly, groups with higher serum lycopene had lower protein oxidation (p<0.05).


In conclusion, these results suggest that the dietary antioxidant lycopene reduces oxidative stress and the levels of bone turnover markers in postmenopausal women, and may be beneficial in reducing the risk of osteoporosis.


Antioxidant capacity Bone turnover markers Lycopene Oxidative stress Postmenopausal osteoporosis Reactive oxygen species 



Funding is shared by the Canadian Institutes of Health Research (CIHR) and the Research and Development Departments of Genuine Health Inc., the H.J. Heinz Co., Millenium Biologix Inc. (Canada), Kagome Co. (Japan), and LycoRed Natural Product Industries, Ltd. (Israel). We thank the assistance of Ms. H. Shen for the HPLC analysis, and Dr. C. Derzko and Mr. M. Simms for initial participant recruitment.


  1. 1.
    World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129Google Scholar
  2. 2.
    Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD (1996) Markers of bone resorption predict hip fracture risk in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11(10):1531–1538PubMedCrossRefGoogle Scholar
  3. 3.
    de Vernejoul M-C (1998) Markers of bone remodeling in metabolic bone disease. Drugs Aging 12(Suppl 1):9–14PubMedCrossRefGoogle Scholar
  4. 4.
    Kushida K, Takahashi M, Kawana K, Inoue T (1995) Comparison of markers for bone formation and resorption in premenopausal and postmenopausal subjects, and osteoporosis patients. J Clin Endocrinol Metab 80(8):2447–2450PubMedCrossRefGoogle Scholar
  5. 5.
    Beers MH, Berkow RB (eds) (1999) The Merck manual of diagnosis and therapy. Merck Research Laboratories, Whitehouse Station, New JerseyGoogle Scholar
  6. 6.
    Fischer M, Raue F (1999) Measurements of bone mineral density. Mineral density in metabolic bone disease. Q J Nucl Med 43(3):233–240PubMedGoogle Scholar
  7. 7.
    Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288(1):275–279PubMedCrossRefGoogle Scholar
  8. 8.
    Melhus H, Michaelsson K, Holmberg L, Wolk A, Jungall L (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14(1):129–135PubMedCrossRefGoogle Scholar
  9. 9.
    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88(4):1523–1527PubMedCrossRefGoogle Scholar
  10. 10.
    Rao L, Krishnadev N, Banasikowska K, Rao A (2003) Lycopene I—effect of osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food 6(2):69–78PubMedCrossRefGoogle Scholar
  11. 11.
    Kim L, Rao AV, Rao LG (2003) Lycopene II—effect on osteoblasts: the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food 6(2):79–86PubMedCrossRefGoogle Scholar
  12. 12.
    Park CK, Ishimi Y, Ohmura M, Yamaguchi M, Ikegami S (1997) Vitamin A and carotenoids stimulate differentiation of mouse osteoblastic cells. J Nutr Sci and Vitaminol 43(3):281–296Google Scholar
  13. 13.
    Rao AV, Agarwal S (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr Res 19(2):305–323CrossRefGoogle Scholar
  14. 14.
    Stahl W, Schwarz W, Sundquist AR, Sies H (1992) cis-trans isomers of lycopene and beta-carotene in human serum and tissues. Arch Biochem Biophys 294(1):173–177PubMedCrossRefGoogle Scholar
  15. 15.
    Hu M (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:380–385PubMedCrossRefGoogle Scholar
  16. 16.
    Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley MA (1993) Comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med 15(4):353–363PubMedCrossRefGoogle Scholar
  17. 17.
    Grolier P, Boirie Y, Levadoux E, Brandolini M, Borel P, Azais-Braesco V, Beaufrere B, Ritz P (2000) Age-related changes in plasma lycopene concentrations, but not in vitamin E, are associated with fat mass. Br J Nutr 84(5):711–716PubMedGoogle Scholar
  18. 18.
    Rock CL, Thornquist MD, Kristal AR, Patterson RE, Cooper DA, Neuhouser ML, Neumark-Sztainer D, Cheskin LJ (1999) Demographic, dietary and lifestyle factors differentially explain variability in serum carotenoids and fat-soluble vitamins: baseline results from the sentinel site of the Olestra Post-Marketing Surveillance Study. J Nutr 129(4):855–864PubMedGoogle Scholar
  19. 19.
    Mackinnon E, Rao A, Josse R, Murray T, Rao L (2006) Lycopene in the serum of postmenopausal women has interactive effects with the dietary components calcium and vitamin C on oxidative stress and bone turnover markers in international osteoporosis foundation world congress on osteoporosis. In: Proceedings of the International Osteoporosis Foundation World Congress on Osteoporosis, Toronto, Canada, June 2006Google Scholar
  20. 20.
    Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163(1):9–17PubMedCrossRefGoogle Scholar
  21. 21.
    Maggio D, Polidori CM, Barabani M, Tufi A, Ruggeiero C, Cecchetti R, Aisa MC, Stahl W, Cherubini A (2005) Low levels of carotenoids and retinol in involutional osteoporosis. Bone 38(2):244–248PubMedCrossRefGoogle Scholar
  22. 22.
    Mayne ST, Cartmel B, Silva F, Kim CS, Fallon BG, Briskin K, Zheng T, Baum M, Shor-Posner G, Goodwin WJ Jr (1999) Plasma lycopene concentrations in humans are determined by lycopene intake, plasma cholesterol concentration and selected demographic factors. J Nutr 129(4):849–854PubMedGoogle Scholar
  23. 23.
    Casso D, White E, Patterson RE, Agurs-Collins T, Kooperburg C, Haines PS (2000) Correlates of serum lycopene in older women. Nutr Cancer 36(2):163–169PubMedCrossRefGoogle Scholar
  24. 24.
    Dominguez Cabrera C, Sosa Henriquez M, Traba ML, Alvarez Villafane E, de la Piedra C (1998) Biochemical markers of bone formation in the study of postmenopausal osteoporosis. Osteoporos Int 8(2):147–151PubMedCrossRefGoogle Scholar
  25. 25.
    Keen RW, Nguyen T, Sobnack R, Perry LA, Thompson PW, Spector TD (1996) Can biochemical markers predict bone loss at the hip and spine?: a 4-year prospective study of 141 early postmenopausal women. Osteoporos Int 6(5):399–406PubMedCrossRefGoogle Scholar
  26. 26.
    Sellmeyer DE, Schloetter M, Sebastian A (2002) Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 87(5):2008–2012PubMedCrossRefGoogle Scholar
  27. 27.
    Greenspan SL, Parker RA, Ferguson L, Rsen HN, Maitland-Ramsey L, Karpf DB (1998) Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res 13(9):1431–1438PubMedCrossRefGoogle Scholar
  28. 28.
    Stepan JJ, Vokrouhlicka J (1999) Comparison of biochemical markers of bone remodelling in the assessment of the effects of alendronate on bone in postmenopausal osteoporosis. Clin Chim Acta 288(1–2):121–135PubMedCrossRefGoogle Scholar
  29. 29.
    Rao AV (2004) Processed tomato products as a source of dietary lycopene: bioavailability and antioxidant properties. Can J Diet Pract Res 65(4):161–165PubMedCrossRefGoogle Scholar
  30. 30.
    Hininger IA, Meyer-Wenger A, Moser U, Wright A, Southon S, Thurnham DI, Chopra M, Van den Berg H, Olmedilla B, Favier AE, Roussel AM (2001) No significant effects of lutein, lycopene or beta-carotene supplementation on biological markers of oxidative stress and LDL oxidizability in healthy adult subjects. J Am Coll Nutr 20(3):232–238PubMedGoogle Scholar
  31. 31.
    Matos HR, Di Mascio P, Medeiros MHG (2000) Protective effect of lycopene on lipid peroxidation and oxidative DNA damage in cell culture. Arch Biochem Biophys 383(1):56–59PubMedCrossRefGoogle Scholar
  32. 32.
    Bhuvaneswari V, Velmurugan B, Abraham SK, Nagini S (2004) Tomato and garlic by gavage modulate 7,12-dimethylbenz[a]anthracene-induced genotoxicity and oxidative stress in mice. Braz J Med Biol Res 37(7):1029–1034PubMedCrossRefGoogle Scholar
  33. 33.
    Rao AV, Agarwal S (1998) Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr Cancer 31(3):199–203PubMedCrossRefGoogle Scholar
  34. 34.
    Agarwal S, Rao AV (1998) Tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study. Lipids 33(10):981–984PubMedCrossRefGoogle Scholar
  35. 35.
    O’Neill ME, Carroll Y, Corridan B, Olmedilla F, Granado F, Blanco I, Van den Berg H, Hininger IA, Rousell AM, Chopra M, Southon S, Thurnham DI (2001) A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br J Nutr 85(4):499–507PubMedCrossRefGoogle Scholar
  36. 36.
    Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS, Lewis CE, Nevitt MC, Simon JA, Stone KL, Wactawski-Wende J (2005) Lack of relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82(3):581–588PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2006

Authors and Affiliations

  • L. G. Rao
    • 1
    • 3
    Email author
  • E. S. Mackinnon
    • 1
  • R. G. Josse
    • 1
  • T. M. Murray
    • 1
  • A. Strauss
    • 1
  • A. V. Rao
    • 2
  1. 1.Division of Endocrinology and Metabolism, Department of MedicineSt. Michael’s HospitalTorontoCanada
  2. 2.Department of Nutritional SciencesUniversity of TorontoTorontoCanada
  3. 3.Calcium Research Laboratory, Suite 2022St. Michael’s HospitalTorontoCanada

Personalised recommendations