Skip to main content

Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women

Abstract

Introduction

Consumption of coffee and tea, and total intake of caffeine has been claimed to be associated with osteoporotic fracture risk. However, results of earlier studies lack consistency.

Methods

We examined this relation in a cohort of 31,527 Swedish women aged 40-76 years at baseline in 1988. The consumption of coffee, caffeinated tea and the intake of caffeine were estimated from a self-administered food frequency questionnaire (FFQ). Multivariate-adjusted hazards ratios (HRs) of fractures with 95% confidence intervals (95% CIs) were estimated by Cox proportional hazards models.

Results

During a mean follow-up of 10.3 years, we observed 3,279 cases with osteoporotic fractures. The highest (>330 mg/day) compared with the lowest (<200 mg/day) quintile of caffeine intake was associated with a modestly increased risk of fracture: HR 1.20 (95% CI: 1.07–1.35). A high coffee consumption significantly increased the risk of fracture (p for trend 0.002), whereas tea drinking was not associated with risk. The increased risk of fracture with both a high caffeine intake and coffee consumption was confined to women with a low calcium intake (<700 mg/day): HR 1.33 (95% CI: 1.07–1.65) with ≥4 cups (600 ml)/day of coffee compared to <1 cup (150 ml)/day. The same comparison but risk estimated for women with a high propensity for fractures (≥2 fracture types) revealed a HR of 1.88 (95% CI: 1.17–3.00).

Conclusions

In conclusion, our results indicate that a daily intake of 330 mg of caffeine, equivalent to 4 cups (600 ml) of coffee, or more may be associated with a modestly increased risk of osteoporotic fractures, especially in women with a low intake of calcium.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Chrischilles E, Shireman T, Wallace R (1994) Costs and health effects of osteoporotic fractures. Bone 15:377–386

    PubMed  Article  CAS  Google Scholar 

  2. Riggs BL, Melton LJ 3rd (1992) The prevention and treatment of osteoporosis. N Engl J Med 327:620–627

    PubMed  CAS  Article  Google Scholar 

  3. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    PubMed  Article  CAS  Google Scholar 

  4. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178–208

    PubMed  CAS  Google Scholar 

  5. Cooper C, Melton L (1992) Epidemiology of osteoporosis and osteoporotic fractures. Trends Endocrinol Metab 3:224–229

    Article  PubMed  CAS  Google Scholar 

  6. Cumming RG, Nevitt MC, Cummings SR (1997) Epidemiology of hip fractures. Epidemiol Rev 19:244–257

    PubMed  CAS  Google Scholar 

  7. Massey LK, Opryszek MS (1990) No effects of adaptation to dietary caffeine on calcium excretion in young women. Nutr Res 10:741–747

    Article  CAS  Google Scholar 

  8. Barger-Lux MJ, Heaney RP (1995) Caffeine and the calcium economy revisited. Osteoporos Int 5:97–102

    PubMed  Article  CAS  Google Scholar 

  9. Harris SS, Dawson-Hughes B (1994) Caffeine and bone loss in healthy postmenopausal women. Am J Clin Nutr 60:573–578

    PubMed  CAS  Google Scholar 

  10. Holbrook TL, Barrett-Connor E, Wingard DL (1988) Dietary calcium and risk of hip fracture: 14-year prospective population study. Lancet 2:1046–1049

    PubMed  Article  CAS  Google Scholar 

  11. Fujiwara S, Kasagi F, Yamada M, Kodama K (1997) Risk factors for hip fracture in a Japanese cohort. J Bone Miner Res 12:998–1004

    PubMed  Article  CAS  Google Scholar 

  12. Hansen SA, Folsom AR, Kushi LH, Sellers TA (2000) Association of fractures with caffeine and alcohol in postmenopausal women: the Iowa Women’s Health Study. Public Health Nutr 3:253–261

    PubMed  CAS  Article  Google Scholar 

  13. Huopio J, Kroger H, Honkanen R, Saarikoski S, Alhava E (2000) Risk factors for perimenopausal fractures: a prospective study. Osteoporos Int 11:219–227

    PubMed  Article  CAS  Google Scholar 

  14. Kreiger N, Gross A, Hunter G (1992) Dietary factors and fracture in postmenopausal women: a case-control study. Int J Epidemiol 21:953–958

    PubMed  Article  CAS  Google Scholar 

  15. Nieves JW, Grisso JA, Kelsey JL (1992) A case-control study of hip fracture: evaluation of selected dietary variables and teenage physical activity. Osteoporos Int 2:122–127

    PubMed  Article  CAS  Google Scholar 

  16. Cumming RG, Klineberg RJ (1994) Case-control study of risk factors for hip fractures in the elderly. Am J Epidemiol 139:493–503

    PubMed  CAS  Google Scholar 

  17. Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, Dilsen G, Gennari C, Lopes Vaz A, Lyritis G et al (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10:1802–1815

    PubMed  CAS  Google Scholar 

  18. Michaelsson K, Holmberg L, Mallmin H, Sorensen S, Wolk A, Bergstrom R, Ljunghall S (1995) Diet and hip fracture risk: a case-control study. Study Group of the Multiple Risk Survey on Swedish Women for Eating Assessment. Int J Epidemiol 24:771–782

    PubMed  Article  CAS  Google Scholar 

  19. Tavani A, Negri E, La Vecchia C (1995) Coffee intake and risk of hip fracture in women in northern Italy. Prev Med 24:396–400

    PubMed  Article  CAS  Google Scholar 

  20. Kanis J, Johnell O, Gullberg B, Allander E, Elffors L, Ranstam J, Dequeker J, Dilsen G, Gennari C, Vaz AL, Lyritis G, Mazzuoli G, Miravet L, Passeri M, Perez Cano R, Rapado A, Ribot C (1999) Risk factors for hip fracture in men from southern Europe: the MEDOS study. Mediterranean Osteoporosis Study. Osteoporos Int 9:45–54

    PubMed  Article  CAS  Google Scholar 

  21. Hernandez-Avila M, Colditz GA, Stampfer MJ, Rosner B, Speizer FE, Willett WC (1991) Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr 54:157–163

    PubMed  CAS  Google Scholar 

  22. Kiel DP, Felson DT, Hannan MT, Anderson JJ, Wilson PW (1990) Caffeine and the risk of hip fracture: the Framingham Study. Am J Epidemiol 132:675–684

    PubMed  CAS  Google Scholar 

  23. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773

    PubMed  Article  CAS  Google Scholar 

  24. Meyer HE, Pedersen JI, Loken EB, Tverdal A (1997) Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol 145:117–123

    PubMed  CAS  Google Scholar 

  25. Barrett-Connor E, Chang JC, Edelstein SL (1994) Coffee-associated osteoporosis offset by daily milk consumption. The Rancho Bernardo Study. JAMA 271:280–283

    PubMed  Article  CAS  Google Scholar 

  26. Hegarty VM, May HM, Khaw KT (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71:1003–1007

    PubMed  CAS  Google Scholar 

  27. Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162:1001–1006

    PubMed  Article  Google Scholar 

  28. Chen Z, Pettinger MB, Ritenbaugh C, LaCroix AZ, Robbins J, Caan BJ, Barad DH, Hakim IA (2003) Habitual tea consumption and risk of osteoporosis: a prospective study in the women’s health initiative observational cohort. Am J Epidemiol 158:772–781

    PubMed  Article  CAS  Google Scholar 

  29. http://www.norden.org/pub/sk/showpub.asp?pubnr=2004:565

  30. European Coffee Federation (2004) European Coffee Report

  31. Bergström L KE, Hagman U, Ericsson HB, Bruce Å (1991) The food composition database KOST: the National Food Administrations’s information system for nutritive values of food. Vår Föda 43:439–447

    Google Scholar 

  32. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures Research Group. Ann Intern Med 115:837–842

    PubMed  CAS  Google Scholar 

  33. Naessen T, Parker R, Persson I, Zack M, Adami HO (1989) Time trends in incidence rates of first hip fracture in the Uppsala Health Care Region, Sweden, 1965–1983. Am J Epidemiol 130:289–299

    PubMed  CAS  Google Scholar 

  34. Michaelsson K, Baron JA, Farahmand BY, Johnell O, Magnusson C, Persson PG, Persson I, Ljunghall S (1998) Hormone replacement therapy and risk of hip fracture: population based case-control study. The Swedish Hip Fracture Study Group. BMJ 316:1858–1863

    PubMed  CAS  Google Scholar 

  35. Sanders KM, Pasco JA, Ugoni AM, Nicholson GC, Seeman E, Martin TJ, Skoric B, Panahi S, Kotowicz MA (1998) The exclusion of high trauma fractures may underestimate the prevalence of bone fragility fractures in the community: the Geelong Osteoporosis Study. J Bone Miner Res 13:1337–1342

    PubMed  Article  CAS  Google Scholar 

  36. Heinzl H, Kaider A (1997) Gaining more flexibility in Cox proportional hazards regression models with cubic spline functions. Comput Methods Programs Biomed 54:201–208

    PubMed  Article  CAS  Google Scholar 

  37. Holbrook TL, Barrett-Connor E (1991) Calcium intake: covariates and confounders. Am J Clin Nutr 53:741–744

    PubMed  CAS  Google Scholar 

  38. Elmazar MM, McElhatton PR, Sullivan FM (1982) Studies on the teratogenic effects of different oral preparations of caffeine in mice. Toxicology 23:57–71

    PubMed  Article  CAS  Google Scholar 

  39. Nakamoto T, Shaye R (1984) Effects of caffeine on the growth of mandible and long bone in protein-energy malnourished newborn rats. Proc Soc Exp Biol Med 177:55–61

    PubMed  CAS  Google Scholar 

  40. Glajchen N, Ismail F, Epstein S, Jowell PS, Fallon M (1988) The effect of chronic caffeine administration on serum markers of bone mineral metabolism and bone histomorphometry in the rat. Calcif Tissue Int 43:277–280

    PubMed  Article  CAS  Google Scholar 

  41. Bergman EA, Newbrey JW, Massey LK (1988) Caffeine does not cause in vitro calcium loss from neonatal mouse calvaria. Calcif Tissue Int 43:281–283

    PubMed  Article  CAS  Google Scholar 

  42. Wink CS, Rossowska MJ, Nakamoto T (1996) Effects of caffeine on bone cells and bone development in fast-growing rats. Anat Rec 246:30–38

    PubMed  Article  CAS  Google Scholar 

  43. Huang TH, Yang RS, Hsieh SS, Liu SH (2002) Effects of caffeine and exercise on the development of bone: a densitometric and histomorphometric study in young Wistar rats. Bone 30:293–299

    PubMed  Article  Google Scholar 

  44. Yeh JK, Aloia JF (1986) Differential effect of caffeine administration on calcium and vitamin D metabolism in young and adult rats. J Bone Miner Res 1:251–258

    PubMed  CAS  Google Scholar 

  45. Whiting SJ, Whitney HL (1987) Effect of dietary caffeine and theophylline on urinary calcium excretion in the adult rat. J Nutr 117:1224–1228

    PubMed  CAS  Google Scholar 

  46. Heaney RP (1982) Nutritional factors and estrogen in age-related bone loss. Clin Invest Med 5:147–155

    PubMed  CAS  Google Scholar 

  47. Massey LK, Wise KJ (1984) The effect of dietary caffeine on urinary excretion of calcium, magnesium, sodium and potassium in healthy young females. Nutr Res 4:43–50

    Article  CAS  Google Scholar 

  48. Massey LK, Hollingbery PW (1988) Acute effects of dietary caffeine and sucrose on urinary mineral excretion of healthy adolescents. Nutr Res 8:1005–1012

    Article  CAS  Google Scholar 

  49. Bergman EA, Massey LK, Wise KJ, Sherrard DJ (1990) Effects of dietary caffeine on renal handling of minerals in adult women. Life Sci 47:557–564

    PubMed  Article  CAS  Google Scholar 

  50. Kynast-Gales SA, Massey LK (1994) Effect of caffeine on circadian excretion of urinary calcium and magnesium. J Am Coll Nutr 13:467–472

    PubMed  CAS  Google Scholar 

  51. Barger-Lux MJ, Heaney RP, Stegman MR (1990) Effects of moderate caffeine intake on the calcium economy of premenopausal women. Am J Clin Nutr 52:722–725

    PubMed  CAS  Google Scholar 

  52. Heaney RP, Recker RR (1994) Determinants of endogenous fecal calcium in healthy women. J Bone Miner Res 9:1621–1627

    PubMed  CAS  Article  Google Scholar 

  53. Heaney RP (2002) Effects of caffeine on bone and the calcium economy. Food Chem Toxicol 40:1263–1270

    PubMed  Article  CAS  Google Scholar 

  54. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74:694–700

    PubMed  CAS  Google Scholar 

  55. Newby PK, Weismayer C, Akesson A, Tucker KL, Wolk A (2006) Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136:626–633

    PubMed  CAS  Google Scholar 

  56. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hallström.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hallström, H., Wolk, A., Glynn, A. et al. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17, 1055–1064 (2006). https://doi.org/10.1007/s00198-006-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0109-y

Keywords

  • Caffeine
  • Coffee
  • Cohort study
  • Fracture
  • Tea