Skip to main content
Log in

Effectiveness of alendronate and etidronate in the treatment of osteoporosis in men: a prospective observational study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The prevalence of osteoporosis in men is higher than previously assumed; consequently, numerous therapies are being investigated to treat these patients. The Canadian Database of Osteoporosis and Osteopenia patients (CANDOO) was analyzed to examine changes in bone mineral density (BMD) in consecutively seen osteoporotic men administered alendronate, etidronate or no bone-active drugs (control) over 1 year. A total of 244 men attending six Canadian osteoporosis clinics were included in the study (42 alendronate, 102 etidronate and 100 control). Multiple imputation was used to model missing data to provide a more robust statistical model. The imputed datasets (five) were analyzed using multivariable linear regression to determine differences between groups in the percent change of lumbar spine (LS) and femoral neck (FN) BMD from baseline to 1 year. Differences in the percent change in BMD from baseline were most notable at the LS in favor of alendronate (4.3%; 95% CI: 2.1, 6.6 ) and etidronate (2.1%; 95% CI: 0.3, 4.0) therapy when compared with controls. At the LS, alendronate therapy led to significantly greater (2.2%; 95% CI: 0.2, 4.2) gains in BMD as compared to etidronate therapy. Compared to controls, there were no significant differences in FN BMD with alendronate (2.1%; 95% CI: −0.4, 4.7) or etidronate therapy (0.9%; 95% CI: −1.1, 2.8), nor were there significant differences between bisphosphonate groups (1.3%; 95% CI: −1.1, 3.6, in favor of alendronate). While both alendronate and etidronate significantly increased LS BMD in osteoporotic men after 1 year in real-world settings, alendronate therapy resulted in significantly superior gains in LS BMD. The effect of these two bisphosphonates on fractures and FN BMD in osteoporotic men is likely positive, but requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, Berger C, Hanley DA, Prior JC (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11:897–904

    CAS  PubMed  Google Scholar 

  2. Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687

    CAS  PubMed  Google Scholar 

  3. Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923

    PubMed  Google Scholar 

  4. Kellie SE, Brody JA (1990) Sex-specific and race-specific hip fracture rates. Am J Public Health 80:326–328

    CAS  PubMed  Google Scholar 

  5. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    CAS  PubMed  Google Scholar 

  6. Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A (1996) Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 81:4358–4365

    CAS  PubMed  Google Scholar 

  7. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, Dlewati A, Staley J, Santanna J, Kapoor SC, Attie MF, Haddad JG Jr, Strom BL (1999) Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 84:1966–1972

    CAS  PubMed  Google Scholar 

  8. Pietschmann P, Kudlacek S, Grisar J, Spitzauer S, Woloszczuk W, Willvonseder R, Peterlik M (2001) Bone turnover markers and sex hormones in men with idiopathic osteoporosis. Eur J Clin Invest 31:444–451

    CAS  PubMed  Google Scholar 

  9. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, Adami S, Weber K, Lorenc R, Pietschmann P, Vandormael K, Lombardi A (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–610

    CAS  PubMed  Google Scholar 

  10. Ho YV, Frauman AG, Thomson W, Seeman E (2000) Effects of alendronate on bone density in men with primary and secondary osteoporosis. Osteoporos Int 11:98–101

    CAS  PubMed  Google Scholar 

  11. Ringe JD, Faber H, Dorst A (2001) Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study. J Clin Endocrinol Metab 86:5252–5255

    CAS  PubMed  Google Scholar 

  12. Geusens P, Vanhoof J, Raus J, Dequeker J, Nijs J, Joly J (1997) Treatment with etidronate for men with idiopathic osteoporosis. Ann Rheum Dis 56:280

    CAS  Google Scholar 

  13. Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E, Lane NE, Kaufman JM, Poubelle PE, Hawkins F, Correa-Rotter R, Menkes CJ, Rodriguez-Portales JA, Schnitzer TJ, Block JA, Wing J, McIlwain HH, Westhovens R, Brown J, Melo-Gomes JA, Gruber BL, Yanover MJ, Leite MO, Siminoski KG, Nevitt MC, Sharp JT, Malice MP, Dumortier T, Czachur M, Carofano W, Daifotis A (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 44:202–211

    CAS  PubMed  Google Scholar 

  14. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S, Thamsborg G, Liberman UA, Delmas PD, Malice MP, Czachur M, Daifotis AG (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 339:292–299

    Article  CAS  PubMed  Google Scholar 

  15. Adachi JD, Bensen WG, Brown J, Hanley D, Hodsman A, Josse R, Kendler DL, Lentle B, Olszynski W, Ste-Marie LG, Tenenhouse A, Chines AA (1997) Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N Engl J Med 337:382–387

    CAS  PubMed  Google Scholar 

  16. Cohen S, Levy RM, Keller M, Boling E, Emkey RD, Greenwald M, Zizic TM, Wallach S, Sewell KL, Lukert BP, Axelrod DW, Chines AA (1999) Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 42:2309–2318

    CAS  PubMed  Google Scholar 

  17. Wallach S, Cohen S, Reid DM, Hughes RA, Hosking DJ, Laan RF, Doherty SM, Maricic M, Rosen C, Brown J, Barton I, Chines AA (2000) Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif Tissue Int 67:277–285

    CAS  PubMed  Google Scholar 

  18. Reid DM, Hughes RA, Laan RF, Sacco-Gibson NA, Wenderoth DH, Adami S, Eusebio RA, Devogelaer JP (2000) Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res 15:1006–1013

    CAS  PubMed  Google Scholar 

  19. Reid DM, Adami S, Devogelaer JP, Chines AA (2001) Risedronate increases bone density and reduces vertebral fracture risk within one year in men on corticosteroid therapy. Calcif Tissue Int 69:242–247

    CAS  PubMed  Google Scholar 

  20. Sebaldt RJ, Adachi JD (1996) Canadian database of osteoporosis and osteopenia patients (CANDOO). Canadian organization for the advancement of computers in healthcare proceedings 21:41–44

    Google Scholar 

  21. Hui SL, Gao S, Zhou XH, Johnston CC, Jr., Lu Y, Gluer CC, Grampp S, Genant H (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470

    CAS  PubMed  Google Scholar 

  22. Faulkner KG, McClung MR (1995) Quality control of DXA instruments in multicenter trials. Osteoporos Int 5:218–227

    CAS  PubMed  Google Scholar 

  23. Crilly RG, Sebaldt RJ, Hodsman AB, Adachi JD, Brown JP, Goldsmith CH, Hanley DA, Olszynski WO, Ste-Marie LG, Stephenson GF (2000) Predicting subsequent bone density response to intermittent cyclical therapy with etidronate from initial density response in patients with osteoporosis. Osteoporos Int 11:607–614

    CAS  PubMed  Google Scholar 

  24. Rubin D (1976) Inference and missing data. Biometrika 63:581–590

    Google Scholar 

  25. Schafer JL (1997) Analysis of incomplete multivariate data. 2–6. Chapman & Hall, London

  26. Brown JP, Josse RG (2002) 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. CMAJ 167:S1–34

    PubMed  Google Scholar 

Download references

Acknowledgements

Procter and Gamble, Canada Inc. (Canada), contributed funds for the development and upkeep of the CANDOO database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Olszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszynski, W.P., Davison, K.S., Ioannidis, G. et al. Effectiveness of alendronate and etidronate in the treatment of osteoporosis in men: a prospective observational study. Osteoporos Int 17, 217–224 (2006). https://doi.org/10.1007/s00198-005-1965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-1965-6

Keywords

Navigation