Skip to main content

Advertisement

Log in

Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Since the soluble receptor activator of the NF-κB ligand (sRANKL) as well as the endogenous anti-resorptive cytokine osteoprotegerin (OPG) are produced by osteoblasts and given that these cells undergo significant changes during antiresorptive treatment, we hypothesized that treatment with bisphosphonates (BP) would be accompanied by changes in serum OPG and sRANKL levels.

Methods

In a prospective, randomized controlled trial of previously untreated postmenopausal women with osteoporosis, oral BP therapy (daily doses of either 10 mg alendronate or 5 mg risedronate) in combination with calcium/vitamin D was compared to calcium/vitamin D treatment alone (control group). Follow-up at 2, 6 and 12 months was completed for 56 patients. Standardized spinal X-rays were performed at baseline, and DEXA measurements at the femoral neck and trochanter were made at baseline and after 1 year. Serum OPG and sRANKL levels were measured with a polyclonal antibody-based ELISA system.

Results

After 1 year, there was a non-significant loss in neck and trochanteric bone mineral density (BMD) in the CTR group and a mean increase of 3.3% and 4.6% in the combined BP group (both p<0.0001), respectively. Serum levels of C-terminal telopeptides of type I collagen (sCTX) and osteocalcin decreased by 12% and 10% at 12 months in the CTR group and by 43% and 23% in the combined BP group, respectively (all significant). OPG serum levels in the CTR group decreased significantly by 9% at 2 months (p<0.005) and remained below pre-treatment levels at later time points. Both the alendronate- and risedronate-treated patient groups showed unaltered OPG levels after 2 months, but they had significantly increased serum levels at 6 and 12 months. Levels of sRANKL were unchanged throughout the treatment period. Univariate regression analysis demonstrated that changes in serum OPG levels after 12 months of BP treatment were positively and better correlated to BMD changes (trochanter: r= 0.59, p<0.0001; neck: r= 0.50, p<0.001) than those of sCTX, which showed the expected negative correlation to BMD change (trochanter: r= –0.35, p=0.03; neck: r= –0.23, p=0.16). With multiple regression analyses at 12 months, R2 values for 1-year changes in trochanteric BMD of 0.33 (OPG alone) and 0.23 (sCTX alone) were significantly improved to the 0.57 when OPG and sCTX changes were combined (p<0.001). Results for the femoral neck were also statistically significant R2=0.35, p<0.001). BMD and OPG changes in the CTR group were not correlated with each other.

Conclusions

We conclude that with BP treatment, changes in serum OPG levels, unlike changes in sCTX levels, are positively correlated to changes in BMD response. The BP-related changes in serum OPG levels during treatment could result from effects on osteoclastogenesis and osteoclast apoptosis as well as from a direct stimulatory effect on osteoblastic OPG production. These changes in OPG levels may be used to predict the individual response of patients to BP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13:581–589

    Article  PubMed  CAS  Google Scholar 

  2. Mönkkönen H, Lehenkari PP, Kellinsalmi M (2004) A new mechanism of action for bisphosphonates: apppi dedicated cytotoxicity of N-BPs. Bone 34:S66–S67

    Google Scholar 

  3. Eriksen EF, Melsen F, Sod E, Barton I, Chines A (2002) Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone 31:620–625

    Article  PubMed  CAS  Google Scholar 

  4. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  PubMed  CAS  Google Scholar 

  5. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption- a hypothesis. Calcif Tissue Int 33:349–351

    Article  PubMed  CAS  Google Scholar 

  6. Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ (1993) Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91:2004–2011

    PubMed  CAS  Google Scholar 

  7. Vitte C, Fleisch H, Guenther HL (1996) Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 137:2324–2333

    Article  PubMed  CAS  Google Scholar 

  8. Giuliani N, Pedrazzoni M, Passeri G, Girasole G (1998) Bisphosphonates inhibit IL-6 production by human osteoblast-like cells. Scand J Rheumatol 27:38–41

    Article  PubMed  CAS  Google Scholar 

  9. Olmos JM, De Vega T, Perera L, Riancho JA, Amado JA, Gonzalez Macias J (1999) Etidronate inhibits the production of IL-6 by osteoblast-like cells. Methods Find Exp Clin Pharmacol 21:519–522

    Article  PubMed  CAS  Google Scholar 

  10. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    PubMed  CAS  Google Scholar 

  11. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PF, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–1374

    Article  PubMed  CAS  Google Scholar 

  12. Gandolfi MG, Pugnaloni A, Mattioli-Belmonte M, Muzzarelli R, De Benedittis A, Mengucci P, Zucchini C, Tesei M, Caudarella R, Biag G (1999) Osteoblast behaviour in the presence of bisphosphonates: ultrastructural and biochemical in vitro studies. Clin Exp Rheumatol 17:327–333

    PubMed  CAS  Google Scholar 

  13. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Gründker C, Hofbauer LC (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291:680–686

    Article  PubMed  CAS  Google Scholar 

  14. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    Article  PubMed  CAS  Google Scholar 

  15. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G (1998) Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone 22:455–461

    Article  PubMed  CAS  Google Scholar 

  16. Pan B, Farrugia AN, Bik To L, Findlay DM, Green J, Lynch K, Zannettino CW (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-α converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  PubMed  CAS  Google Scholar 

  17. Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, LoRusso P, Ma P, Ravera C, Deckert F, Schran H, Seaman J, Skerjanec A (2002) Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 42:1228–1236

    Article  PubMed  CAS  Google Scholar 

  18. Mezquita-Raya P, de la Higuera M, Garcia DF, Alonso G, Ruiz-Requena ME, de Dios Luna J, Escobar-Jimenez F, Munoz-Torres M (2005) The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos Int. 16:1368–1374

    Article  PubMed  Google Scholar 

  19. Oh KW, Rhee EJ, Lee WY, Kim SW, Baek KH, Kang MI, Yun EJ, Park CY, Ihm SH, Choi MG, Yoo HJ, Park SW (2005) Circulating osteoprotegerin and receptor activator of NF-kappaB ligand system are associated with bone metabolism in middle-aged males. Clin Endocrinol 62:92–98

    Article  CAS  Google Scholar 

  20. Indridason OS, Franzson L, Sigurdsson G (2005) Serum osteoprotegerin and its relationship with bone mineral density and markers of bone turnover. Osteoporos Int 16:417–423

    Article  PubMed  CAS  Google Scholar 

  21. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD (2001) Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 86:3162–3165

    Article  PubMed  CAS  Google Scholar 

  22. Abdallah BM, Stilgren LS, Nissen N, Kassem M, Jorgensen HR, Abrahamsen B (2005) Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int 76:90–97

    Article  PubMed  CAS  Google Scholar 

  23. Fahrleitner-Pammer A, Dobnig H, Piswanger-Soelkner C, Bonelli C, Dimai HP, Leb G, Obermayer-Pietsch B (2003) Osteoprotegerin serum levels in women: correlation with age, bone mass, bone turnover and fracture status. Wien Klin Wochenschr 115:291–297

    Article  PubMed  CAS  Google Scholar 

  24. Browner WS, Lui LY, Cummings SR (2001) Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab 86:631–637

    Article  PubMed  CAS  Google Scholar 

  25. Ziolkowska M, Kurowska M, Radzikowska A, Luszczykiewicz G, Wiland P, Dziewczopolski W, Filipowicz-Sosnowska A, Pazdur J, Szechinski J, Kowalczewski J, Rell-Bakalarska M, Maslinski W (2002) High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis Rheum 46:1744–1753

    Article  PubMed  CAS  Google Scholar 

  26. Amato G, Mazziotti G, Sorvillo F, Piscopo M, Lalli E, Biondi B, Iorio S, Molinari A, Giustina A, Carella C (2004) High serum osteoprotegerin levels in patients with hyperthyroidism: effect of medical treatment. Bone 35:785–791

    Article  PubMed  CAS  Google Scholar 

  27. Stilgren LS, Rettmer E, Eriksen EF, Hegedus L, Beck-Nielsen H, Abrahamsen B (2004) Skeletal changes in osteoprotegerin and receptor activator of nuclear factor-kappa β ligand mRNA levels in primary hyperparathyroidism: effect of parathyroidectomy and association with bone metabolism. Bone 35:256–265

    Article  PubMed  CAS  Google Scholar 

  28. Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, Wolf AM, Tilg H (2005) The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 54:479–487

    Article  PubMed  CAS  Google Scholar 

  29. Sankaralingam S, Frost M, Fogelman I, Hampson G (2003) Early changes in serum osteoprotegerin (OPG) correlates with changes in bone mineral density following treatment with risedronate in post-menopausal women with osteoporosis (Abstract). J Bone Miner Res 18:S158

    Google Scholar 

  30. Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    PubMed  CAS  Google Scholar 

  31. Genant HK, Wu CY, Van Kulik C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  PubMed  CAS  Google Scholar 

  32. Ravn P, Hosking D, Thompson D, Cizza G, Wasnich RD, McClung M, Yates AJ, Bjarnason NH, Christiansen C (1999) Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention study. J Clin Endocrinol Metab 84:2363–2368

    Article  PubMed  CAS  Google Scholar 

  33. Christgau S, Rosenquist C, Alexandersen P, Hannover Bjarnason N, Ravn P, Fledelius C, Herling C, Qvist P, Christiansen C (1998) Clinical evaluation of the serum crosslaps one step ELISA, a new assay measuring the serum concentration of bone-derived degradation products of type I collagen C-telopeptides. Clin Chem 44:2290–2300

    PubMed  CAS  Google Scholar 

  34. Greenspan SL, Parker RA, Ferguson L, Rosen HN, Maitland-Ramsey L, Karpf DB (1998) Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res 13:1431–1438

    Article  PubMed  CAS  Google Scholar 

  35. Rogers A, Hannon RA, Eastell R (2000) Biochemical markers as predictors of rates of bone loss after menopause J Bone Miner Res 15:1398–1404

    Article  PubMed  CAS  Google Scholar 

  36. Hofbauer LC, Kuhne CA, Viereck V (2004) The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact 4:268–275

    PubMed  CAS  Google Scholar 

  37. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    PubMed  CAS  Google Scholar 

  38. Chavassieux PM, Arlot ME, Reda C, Wie L, Yates AJ, Meunier PJ (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100:1475–1480

    PubMed  CAS  Google Scholar 

  39. Bone HG, Downs RW, Tucci JR, Harris ST, Weinstein RS, Licata AA, McClung MR, Kimmel DB, Gertz BJ, Hale E Polvino WJ (1997) Dose-response relationships for alendronate treatment in osteoporotic elderly women. J Clin Endocrinol Metab 82:265–274

    Article  PubMed  CAS  Google Scholar 

  40. Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL (2000) The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141:4768–4776

    Article  PubMed  CAS  Google Scholar 

  41. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  PubMed  CAS  Google Scholar 

  42. Vasikaran SD (2001) Bisphosphonates: an overview with special reference to alendronate. Ann Clin Biochem 38:608–623

    Article  PubMed  CAS  Google Scholar 

  43. Greenspan SL, Holland S, Maitland-Ramsey L, Poku M, Freeman A, Yuan W, Kher U, Gertz B (1996) Alendronate stimulation of nocturnal parathyroid hormone secretion: a mechanism to explain the continued improvement in bone mineral density accompanying alendronate therapy. Proc Assoc Am Physicians 108:230–238

    PubMed  CAS  Google Scholar 

  44. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors should like to thank Eugenia Lamont for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dobnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobnig, H., Hofbauer, L.C., Viereck, V. et al. Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int 17, 693–703 (2006). https://doi.org/10.1007/s00198-005-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-0035-4

Keywords

Navigation