Skip to main content

Advertisement

Log in

Patient assessment using standardized bone mineral density values and a national reference database: implementing uniform thresholds for the reimbursement of osteoporosis treatments in Belgium

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Dual-energy X-ray absorptiometry (DXA) devices from the three main manufacturers provide different bone mineral density (BMD) values, due in part to technical differences in the algorithms for bone mineral content (BMC) and area measurements and in part to the use of different manufacturer-derived reference databases. As a result, significant differences exist between Hologic, Lunar and Norland systems in the reported young normal standard deviation scores or T-scores. In a number of European countries, including Belgium, a T-score below −2.5 is one of the key criteria for reimbursement of osteoporosis treatments. This paper addresses the first attempt to implement a nationwide, uniform expression of BMD in patients, in order to harmonize drug reimbursement. To this end, measures were taken to implement a uniform expression of BMD in Belgian patients, by converting each manufacturer's absolute BMD to standardized BMD (sBMD) values and by establishing a single national reference range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Looker AC, Wahner HW, Dunn WI, et al. Proximal femur bone mineral levels of US adults. Osteoporos Int 1995;5:389–409.

    Google Scholar 

  2. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 1998;8:468–489.

    Google Scholar 

  3. Kanis JA, Glüer C-C for the Committee of Scientific Advisors, International Osteoporosis Foundation. An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 2000;11:192–202.

    Google Scholar 

  4. Genant HK, Grampp S, Glüer CC, Faulkner KG, Jergas M, Engelke K, et al. Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994;9:1503–1514.

    Google Scholar 

  5. Hui SL, Gao S, Zhou X-H, Johnston CC, Lu Y, Glüer CC, et al. Universal standardization of bone density measurements: A method with optimal properties for calibration among several instruments. J Bone Miner Res 1997;12:1463–1470.

    Google Scholar 

  6. Hanson J. Standardization of femur BMD. J Bone Miner Res 1997;12:1316–1417.

    Google Scholar 

  7. Lu Y, Fuerst T, Hui S, Genant HK. Standardization of bone mineral density at femoral neck, trochanter and Ward's triangle. Osteoporos Int 2001;12:438–444.

    Google Scholar 

  8. Simmons A, Simpson DE, O'Doherty MJ, Barrington S, Coakley AJ. The effects of standardization and reference values on patient classification for spine and femur dual-energy X-ray absorptiometry. Osteoporos Int 1997;7:200–206.

    Google Scholar 

  9. Löfman O, Larsson L, Toss G. Bone mineral density in diagnosis of osteoporosis. J Clin Densitom 2000;3:177–186.

    Google Scholar 

  10. Simmons A, Simpson DE, O'Doherty MJ, Barrington S, Coakley AJ. The effects of standardization and reference values on patient classification for spine and femur dual-energy X-ray absorptiometry. Osteoporos Int 1997;7:200–206.

    Google Scholar 

  11. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman JA. Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 1992;7:1081–1084.

    Google Scholar 

  12. Laskey MA, Crisp AJ, Cole TJ, Compston JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol 1992;65:1124–1129.

    Google Scholar 

  13. Faulkner KG, Roberts LA, McClung MR. Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 1996;6:432–436.

    Google Scholar 

  14. Valimaki MJ, Karkkainen M, Lamberg-Allardt C, et al. Exercise, smoking and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ 1994;309:230–235.

    Google Scholar 

  15. Ahmed AIH, Blake GM, Rymer JM, Fogelman I. Screening for osteopenia and osteoporosis: do the accepted normal ranges lead to overdiagnosis? Osteoporos Int 1997;7:432–438.

    Google Scholar 

  16. Gürlek A, Bayraktar M, Ariyürek M. Inappropriate reference range for peak bone mineral density in dual-energy x-ray absorptiometry: implications for the interpretation of T-scores. Osteoporos Int 2000;11: 809–813.

    Google Scholar 

  17. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures. Results from the Fracture Intervention Trial (FIT). JAMA 1998;280:2077–2082.

    Google Scholar 

  18. Ettinger B, Black D, Mitlack B, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. Results from a 3-year randomized clinical trial. JAMA 1999;282:637–645.

    Google Scholar 

  19. Reginster J-Y, Minne HW, Sorensen OH, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Osteoporos Int 2000;11:83–91.

    Google Scholar 

  20. Chesnut CH, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the Prevent Recurrrence of Osteoporotic Fractures (PROOF) Study. Am J Med 2000;109:267–276.

    Google Scholar 

  21. WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva: WHO, 1994.

  22. Eddy DM, Johnston CC, Cummings SR, Dawson-Hughes B, Lindsay R, Melton LJ, et al. Osteoporosis: review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis. Osteoporos Int 1998;8 (Suppl. 4):S1–88.

    Google Scholar 

  23. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312:1254–1259.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for logistic support from Hologic Inc., Lunar Corporation and Norland Corporation and to Drs. Bersou, Blockeel, Boutsen, Casaer, Coolen, Crombez, De Boeck, de Buisseret, Delval, Dorny, Dumont, Dwelshauwer, Gaudissart, Geusens, Goethals, Gomez, Grégoire, Hendrickx, Jacques, Lamberigts, Lenaeerts, Louis, Mertens, Milet, Pornel, Raeman, Remans, Temmerman, Troch, Vancleynenbreugel, Van Laere, Van Meerbeek, Van Wanghe and Verbeek for recruiting and assessing subjects. S.B. is senior clinical investigator of the Fund for Scientific Research—Flanders, Belgium (FWO—Vlaanderen).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J.-P. Devogelaer.

Appendixes

Appendixes

Appendix A: The executive board of the Belgian Bone Club

The executive board of the Belgian Bone Club consists of the following investigators: Jean-Jacques Body, MD, PhD (Université Libre de Bruxelles), Steven Boonen, MD, PhD (Katholieke Universiteit Leuven), Marc E. De Broe, MD, PhD (University of Antwerpen), Jean-Pierre Devogelaer, MD (Université catholique de Louvain), Jean-Marc Kaufman, MD, PhD (Rijks Universiteit Gent), Jean-Yves Reginster, MD, PhD (Université d'Etat de Liège), Jan Remans (Genk) and Serge Rosenberg, MD, PhD (Université Libre de Bruxelles).

Appendix B: Various formulas used to standardize the BMD values

Lumbar spine sBMD (mg/cm 2 )

  • Genant et al. [4]

    Hologic::

    LS BMD=(1.0755×BMDH)×1000

    Lunar::

    LS BMD=(0.9522×BMDL)×1000

    Norland::

    LS BMD=(1.0761×BMDN)×1000

  • Hui et al. [5]

    Hologie::

    LS BMD=[1.0550 (BMDH−0.972)+1.0436]×1000

    Lunar::

    LS BMD=[0.9683 (BMDL−1.100)+1.0436]×1000

    Norland::

    LS BMD=[0.9743 (BMDN−0.969)+1.0436]×1000

Total hip sBMD (mg/cm 2 )

  • Hanson et al. [6]

    Hologic::

    TH sBMD=1.008×BMDH+6

    Lunar::

    TH sBMD=979×BMDL−31

    Norland::

    TH sBMD=1012×BMDN)+26

  • Lu et al. [7]

    Hologic::

    TH sBMD=[(0.006+1.008)×BMDH]×1000

    Lunar::

    TH sBMD=[(-0.031+0.979)×BMDL]×1000

    Norland::

    TH sBMD=[(0.026+1.012)×BMDN]×1000

Femoral neck sBMD (mg/cm 2 )

  • Lu et al. [7]

    Hologic::

    FN sBMD=[(0.019+1.087)×BMDH]×1000

    Lunar::

    FN sBMD=[(-0.023+0.939)×BMDL]×1000

    Norland::

    FN sBMD=[(0.006+0.985)×BMDN]×1000

  • Simmons et al. [8]

    Hologic::

    FN sBMD=[(1.031×BMDH)+0.058]×1000

    Lunar::

    FN sBMD=[(0.961×BMDL)−0.037]×1000

    Norland::

    FN sBMD=BMDN×1000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonen, S., Kaufman, JM., Reginster, JY. et al. Patient assessment using standardized bone mineral density values and a national reference database: implementing uniform thresholds for the reimbursement of osteoporosis treatments in Belgium. Osteoporos Int 14, 110–115 (2003). https://doi.org/10.1007/s00198-002-1321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-002-1321-z

Keywords

Navigation