Ribonukleinsäure

Bedeutung in der forensischen Molekularbiologie

Ribonucleic acid

Importance in forensic molecular biology

Zusammenfassung

Im vorliegenden Beitrag wird nach einem Exkurs zur Ribonukleinsäure(RNA)-Biologie und -Analytik eine Übersicht über die Möglichkeiten und Aspekte der forensisch-analytischen Nutzung einzelner RNA-Formen gegeben. Verschiedene RNA erfüllen in lebenden Zellen und Geweben zahlreiche zentrale Funktionen. Die „messenger“-RNA (mRNA) dient als temporärer molekularer Informationsüberträger der Genexpression, und die Analyse der Gesamtheit der mRNA einer Zelle zu einem Zeitpunkt, des Transkriptoms, ermöglicht die Bestimmung von Zelltyp sowie -zustand. Dies macht man sich bei den forensischen Fragestellungen nach der geweblichen Zuordnung von biologischen Asservaten und der Zusammensetzung von Mischspuren aus verschiedenen Körperflüssigkeiten zunutze. Das Verhältnis der unterschiedlichen Degradationsprozesse einzelner RNA-Formen wird zur molekularen Altersbestimmung biologischer Spuren herangezogen. Die differenzielle und zustandsspezifische Expression von mRNA ist hilfreich bei der forensischen Bewertung von Wundalter und -zustand, Heilungsprozessen sowie dem Gestationsalter und kann auch Hinweise zu pathophysiologischen Prozessen von Sterbevorgängen geben. Mit der stetigen Zunahme von Bedeutung, Methodenvielfalt und Umfang der forensischen RNA-Analytik wird seit Kurzem auch das Potenzial der Untersuchung von Mikro-RNA-Expressionsmustern für die forensische Fallarbeit evaluiert.

Abstract

In this article a digression into the biology and analysis of ribonucleic acid (RNA) will be followed by a review of the possibilities and aspects of the forensic analytic use of individual RNA forms. Various forms of RNA fulfil many core functions in living cells and tissues. Messenger RNA (mRNA) serves as a temporary information transporter of gene expression and the analysis of total RNA of a cell at any point in time, the transcriptome, allows the determination of cell type and state. This can be used in forensic problems for the assignment of biological specimens and components of mixed stains containing different body fluids to particular tissues. The relationship of the various degradation processes of individual RNA types can be used for the molecular age estimation of biological stains. The differential and stage-specific expression of mRNA is useful for forensic evaluation of wound age and condition, healing processes and also gestational age and can also provide evidence on pathophysiological processes related to the stages of dying. With the continuously increasing importance, multitude of methods and scope of forensic RNA analysis, the potential of investigating micro-RNA expression patterns has also recently been evaluated for forensic casework.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Alberts B, Johnson A, Walter P et al (2007) Molecular biology of the cell, 5. Aufl. Taylor & Francis, London

  2. 2.

    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Gerhold D, Rushmore T, Caskey CT (1999) DNA chips: promising toys have become powerful tools. Trends Biochem Sci 24:168–173

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Oehmichen M, Zilles K (1984) Postmortem DNA and RNA synthesis. Preliminary studies in human cadavers. Z Rechtsmed 91:287–294

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Phang TW, Shi CY, Chia JN, Ong CN (1994) Amplification of cDNA via RT-PCR using RNA extracted from postmortem tissues. J Forensic Sci 39:1275–1279

    PubMed  CAS  Google Scholar 

  9. 9.

    Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Koppelkamm A, Vennemann B, Lutz-Bonengel S et al (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med 125:573–580

    PubMed  Article  Google Scholar 

  11. 11.

    Zubakov D, Kokshoorn M, Kloosterman A, Kayser M (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 123:71–74

    PubMed  Article  Google Scholar 

  12. 12.

    Karlsson H, Guthenberg C, Döbeln U von, Kristenssson K (2003) Extraction of RNA from dried blood on filter papers after long-term storage. Clin Chem 49:979–981

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Doorn NL van, Wilson AS, Willerslev E, Gilbert MT (2011) Bone marrow and bone as a source for postmortem RNA. J Forensic Sci 56:720–725

    PubMed  Article  Google Scholar 

  14. 14.

    Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    PubMed  Article  Google Scholar 

  15. 15.

    Bauer M (2007) RNA in forensic science. Forensic Sci Int Genet 1:69–74

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Haas C, Klesser B, Maake C et al (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int 3:80–88

    CAS  Article  Google Scholar 

  18. 18.

    Haas C, Hanson E, Kratzer A et al (2011) Selection of highly specific and sensitive mRNA biomarkers for the identification of blood. Forensic Sci Int Genet 5:449–458

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Visser M, Zubakov D, Ballantyne KN, Kayser M (2011) mRNA-based skin identification for forensic applications. Int J Legal Med 125:253–263

    PubMed  Article  Google Scholar 

  20. 20.

    Alvarez M, Juusola J, Ballantyne J (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 335:289–298

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Haas C, Hanson E, Anjos MJ et al (2011) RNA/DNA co-analysis from blood stains-Results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6:70–80, doi:10.1016/j.fsigen.2011.02.004

    PubMed  Article  Google Scholar 

  22. 22.

    Liu B, Lague JR, Nunes DP et al (2002) Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands. J Histochem Cytochem 50:811–820

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Abiko Y, Nishimura M, Kaku T (2003) Defensins in saliva and the salivary glands. Med Electron Microsc 36:247–252

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Fleming RI, Harbison S (2010) The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet 4:311–315

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Legal Med 111:251–255

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Sun JH, Wang YY, Zhang L et al (2010) Time-dependent expression of skeletal muscle troponin I mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Int J Legal Med 124:27–33

    PubMed  Article  Google Scholar 

  27. 27.

    Sato Y, Ohshima T (2000) The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113:140–145

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Takamiya M, Saigusa K, Nakayashiki N, Aoki Y (2003) Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. Int J Legal Med 117:46–50

    PubMed  Google Scholar 

  29. 29.

    Takamiya M, Saigusa K, Kumagai R et al (2005) Studies on mRNA expression of tissue-type plasminogen activator in bruises for wound age estimation. Int J Legal Med 119:16–21

    PubMed  Article  Google Scholar 

  30. 30.

    Bai R, Wan L, Shi M (2008) The time-dependent expressions of IL-1beta, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int 175:193–197

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Zhao D, Zhu BL, Ishikawa T et al (2006) Quantitative RT-PCR assays of hypoxia-inducible factor-1alpha, erythropoietin and vascular endothelial growth factor mRNA transcripts in the kidneys with regard to the cause of death in medicolegal autopsy. Leg Med (Tokyo) 8:258–263

    Article  Google Scholar 

  32. 32.

    Zhao D, Ishikawa T, Quan L et al (2008) Tissue-specific differences in mRNA quantification of glucose transporter 1 and vascular endothelial growth factor with special regard to death investigations of fatal injuries. Forensic Sci Int 177:176–183

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Zhao D, Ishikawa T, Quan L et al (2009) Postmortem mRNA quantification for investigation of infantile death: a comparison with adult cases. Leg Med (Tokyo) 11:286–289

    Article  Google Scholar 

  34. 34.

    Maeda H, Zhu BL, Ishikawa T, Michiue T (2010) Forensic molecular pathology of violent deaths. Forensic Sci Int 203:83–92

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Zhu BL, Tanaka S, Ishikawa T et al (2008) Forensic pathological investigation of myocardial hypoxia-inducible factor-1 alpha, erythropoietin and vascular endothelial growth factor in cardiac death. Leg Med (Tokyo) 10:11–19

    Article  Google Scholar 

  36. 36.

    Gauvin J, Zubakov D, Rhee-Binkhorst J van et al (2010) Forensic pregnancy diagnostics with placental mRNA markers. Int J Legal Med 124:13–17

    PubMed  Article  Google Scholar 

  37. 37.

    Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg Med (Tokyo) 5:220–227

    Article  Google Scholar 

  38. 38.

    Kimura A, Ishida Y, Hayashi T et al (2011) Estimating time of death based on the biological clock. Int J Legal Med 125:385–391

    PubMed  Article  Google Scholar 

  39. 39.

    Bauer M, Polzin S, Patzelt D (2003) Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 138:94–103

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Hampson C, Louhelainen J, McColl S (2011) An RNA expression method for aging forensic hair samples. J Forensic Sci 56:359–365

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Courts C, Madea B (2010) Micro-RNA – A potential for forensic science? Forensic Sci Int 203:106–111

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Zubakov D, Boersma AW, Choi Y et al (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226

    PubMed  Article  Google Scholar 

  45. 45.

    Courts C, Madea B (2011) Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci 56:1464–1470

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Wang Z, Luo H, Pan X et al (2011) A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Sci Int Genet, doi:10.1016/j.fsigen.2011.08.008

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. C. Courts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Courts, C., Madea, B. Ribonukleinsäure. Rechtsmedizin 22, 135–144 (2012). https://doi.org/10.1007/s00194-011-0796-3

Download citation

Schlüsselwörter

  • „Messenger“-RNA
  • Körperflüssigkeiten
  • Genexpression
  • Wundalter
  • Mikro-RNA

Keywords

  • Messenger RNA
  • Body fluids
  • Gene expression
  • Wound age
  • Micro-RNA