Advertisement

Rechtsmedizin

, Volume 22, Issue 2, pp 135–144 | Cite as

Ribonukleinsäure

Bedeutung in der forensischen Molekularbiologie
  • C. Courts
  • B. Madea
CME Weiterbildung · Zertifizierte Fortbildung

Zusammenfassung

Im vorliegenden Beitrag wird nach einem Exkurs zur Ribonukleinsäure(RNA)-Biologie und -Analytik eine Übersicht über die Möglichkeiten und Aspekte der forensisch-analytischen Nutzung einzelner RNA-Formen gegeben. Verschiedene RNA erfüllen in lebenden Zellen und Geweben zahlreiche zentrale Funktionen. Die „messenger“-RNA (mRNA) dient als temporärer molekularer Informationsüberträger der Genexpression, und die Analyse der Gesamtheit der mRNA einer Zelle zu einem Zeitpunkt, des Transkriptoms, ermöglicht die Bestimmung von Zelltyp sowie -zustand. Dies macht man sich bei den forensischen Fragestellungen nach der geweblichen Zuordnung von biologischen Asservaten und der Zusammensetzung von Mischspuren aus verschiedenen Körperflüssigkeiten zunutze. Das Verhältnis der unterschiedlichen Degradationsprozesse einzelner RNA-Formen wird zur molekularen Altersbestimmung biologischer Spuren herangezogen. Die differenzielle und zustandsspezifische Expression von mRNA ist hilfreich bei der forensischen Bewertung von Wundalter und -zustand, Heilungsprozessen sowie dem Gestationsalter und kann auch Hinweise zu pathophysiologischen Prozessen von Sterbevorgängen geben. Mit der stetigen Zunahme von Bedeutung, Methodenvielfalt und Umfang der forensischen RNA-Analytik wird seit Kurzem auch das Potenzial der Untersuchung von Mikro-RNA-Expressionsmustern für die forensische Fallarbeit evaluiert.

Schlüsselwörter

„Messenger“-RNA Körperflüssigkeiten Genexpression Wundalter Mikro-RNA 

Ribonucleic acid

Importance in forensic molecular biology

Abstract

In this article a digression into the biology and analysis of ribonucleic acid (RNA) will be followed by a review of the possibilities and aspects of the forensic analytic use of individual RNA forms. Various forms of RNA fulfil many core functions in living cells and tissues. Messenger RNA (mRNA) serves as a temporary information transporter of gene expression and the analysis of total RNA of a cell at any point in time, the transcriptome, allows the determination of cell type and state. This can be used in forensic problems for the assignment of biological specimens and components of mixed stains containing different body fluids to particular tissues. The relationship of the various degradation processes of individual RNA types can be used for the molecular age estimation of biological stains. The differential and stage-specific expression of mRNA is useful for forensic evaluation of wound age and condition, healing processes and also gestational age and can also provide evidence on pathophysiological processes related to the stages of dying. With the continuously increasing importance, multitude of methods and scope of forensic RNA analysis, the potential of investigating micro-RNA expression patterns has also recently been evaluated for forensic casework.

Keywords

Messenger RNA Body fluids Gene expression Wound age Micro-RNA 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Alberts B, Johnson A, Walter P et al (2007) Molecular biology of the cell, 5. Aufl. Taylor & Francis, LondonGoogle Scholar
  2. 2.
    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedCrossRefGoogle Scholar
  3. 3.
    Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161PubMedCrossRefGoogle Scholar
  4. 4.
    Gerhold D, Rushmore T, Caskey CT (1999) DNA chips: promising toys have become powerful tools. Trends Biochem Sci 24:168–173PubMedCrossRefGoogle Scholar
  5. 5.
    Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511PubMedCrossRefGoogle Scholar
  6. 6.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefGoogle Scholar
  7. 7.
    Oehmichen M, Zilles K (1984) Postmortem DNA and RNA synthesis. Preliminary studies in human cadavers. Z Rechtsmed 91:287–294PubMedCrossRefGoogle Scholar
  8. 8.
    Phang TW, Shi CY, Chia JN, Ong CN (1994) Amplification of cDNA via RT-PCR using RNA extracted from postmortem tissues. J Forensic Sci 39:1275–1279PubMedGoogle Scholar
  9. 9.
    Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994PubMedCrossRefGoogle Scholar
  10. 10.
    Koppelkamm A, Vennemann B, Lutz-Bonengel S et al (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med 125:573–580PubMedCrossRefGoogle Scholar
  11. 11.
    Zubakov D, Kokshoorn M, Kloosterman A, Kayser M (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 123:71–74PubMedCrossRefGoogle Scholar
  12. 12.
    Karlsson H, Guthenberg C, Döbeln U von, Kristenssson K (2003) Extraction of RNA from dried blood on filter papers after long-term storage. Clin Chem 49:979–981PubMedCrossRefGoogle Scholar
  13. 13.
    Doorn NL van, Wilson AS, Willerslev E, Gilbert MT (2011) Bone marrow and bone as a source for postmortem RNA. J Forensic Sci 56:720–725PubMedCrossRefGoogle Scholar
  14. 14.
    Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3PubMedCrossRefGoogle Scholar
  15. 15.
    Bauer M (2007) RNA in forensic science. Forensic Sci Int Genet 1:69–74PubMedCrossRefGoogle Scholar
  16. 16.
    Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96PubMedCrossRefGoogle Scholar
  17. 17.
    Haas C, Klesser B, Maake C et al (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int 3:80–88CrossRefGoogle Scholar
  18. 18.
    Haas C, Hanson E, Kratzer A et al (2011) Selection of highly specific and sensitive mRNA biomarkers for the identification of blood. Forensic Sci Int Genet 5:449–458PubMedCrossRefGoogle Scholar
  19. 19.
    Visser M, Zubakov D, Ballantyne KN, Kayser M (2011) mRNA-based skin identification for forensic applications. Int J Legal Med 125:253–263PubMedCrossRefGoogle Scholar
  20. 20.
    Alvarez M, Juusola J, Ballantyne J (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 335:289–298PubMedCrossRefGoogle Scholar
  21. 21.
    Haas C, Hanson E, Anjos MJ et al (2011) RNA/DNA co-analysis from blood stains-Results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6:70–80, doi:10.1016/j.fsigen.2011.02.004PubMedCrossRefGoogle Scholar
  22. 22.
    Liu B, Lague JR, Nunes DP et al (2002) Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands. J Histochem Cytochem 50:811–820PubMedCrossRefGoogle Scholar
  23. 23.
    Abiko Y, Nishimura M, Kaku T (2003) Defensins in saliva and the salivary glands. Med Electron Microsc 36:247–252PubMedCrossRefGoogle Scholar
  24. 24.
    Fleming RI, Harbison S (2010) The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet 4:311–315PubMedCrossRefGoogle Scholar
  25. 25.
    Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Legal Med 111:251–255PubMedCrossRefGoogle Scholar
  26. 26.
    Sun JH, Wang YY, Zhang L et al (2010) Time-dependent expression of skeletal muscle troponin I mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Int J Legal Med 124:27–33PubMedCrossRefGoogle Scholar
  27. 27.
    Sato Y, Ohshima T (2000) The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113:140–145PubMedCrossRefGoogle Scholar
  28. 28.
    Takamiya M, Saigusa K, Nakayashiki N, Aoki Y (2003) Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. Int J Legal Med 117:46–50PubMedGoogle Scholar
  29. 29.
    Takamiya M, Saigusa K, Kumagai R et al (2005) Studies on mRNA expression of tissue-type plasminogen activator in bruises for wound age estimation. Int J Legal Med 119:16–21PubMedCrossRefGoogle Scholar
  30. 30.
    Bai R, Wan L, Shi M (2008) The time-dependent expressions of IL-1beta, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int 175:193–197PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao D, Zhu BL, Ishikawa T et al (2006) Quantitative RT-PCR assays of hypoxia-inducible factor-1alpha, erythropoietin and vascular endothelial growth factor mRNA transcripts in the kidneys with regard to the cause of death in medicolegal autopsy. Leg Med (Tokyo) 8:258–263CrossRefGoogle Scholar
  32. 32.
    Zhao D, Ishikawa T, Quan L et al (2008) Tissue-specific differences in mRNA quantification of glucose transporter 1 and vascular endothelial growth factor with special regard to death investigations of fatal injuries. Forensic Sci Int 177:176–183PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao D, Ishikawa T, Quan L et al (2009) Postmortem mRNA quantification for investigation of infantile death: a comparison with adult cases. Leg Med (Tokyo) 11:286–289CrossRefGoogle Scholar
  34. 34.
    Maeda H, Zhu BL, Ishikawa T, Michiue T (2010) Forensic molecular pathology of violent deaths. Forensic Sci Int 203:83–92PubMedCrossRefGoogle Scholar
  35. 35.
    Zhu BL, Tanaka S, Ishikawa T et al (2008) Forensic pathological investigation of myocardial hypoxia-inducible factor-1 alpha, erythropoietin and vascular endothelial growth factor in cardiac death. Leg Med (Tokyo) 10:11–19CrossRefGoogle Scholar
  36. 36.
    Gauvin J, Zubakov D, Rhee-Binkhorst J van et al (2010) Forensic pregnancy diagnostics with placental mRNA markers. Int J Legal Med 124:13–17PubMedCrossRefGoogle Scholar
  37. 37.
    Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg Med (Tokyo) 5:220–227CrossRefGoogle Scholar
  38. 38.
    Kimura A, Ishida Y, Hayashi T et al (2011) Estimating time of death based on the biological clock. Int J Legal Med 125:385–391PubMedCrossRefGoogle Scholar
  39. 39.
    Bauer M, Polzin S, Patzelt D (2003) Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 138:94–103PubMedCrossRefGoogle Scholar
  40. 40.
    Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45PubMedCrossRefGoogle Scholar
  41. 41.
    Hampson C, Louhelainen J, McColl S (2011) An RNA expression method for aging forensic hair samples. J Forensic Sci 56:359–365PubMedCrossRefGoogle Scholar
  42. 42.
    Courts C, Madea B (2010) Micro-RNA – A potential for forensic science? Forensic Sci Int 203:106–111PubMedCrossRefGoogle Scholar
  43. 43.
    Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314PubMedCrossRefGoogle Scholar
  44. 44.
    Zubakov D, Boersma AW, Choi Y et al (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226PubMedCrossRefGoogle Scholar
  45. 45.
    Courts C, Madea B (2011) Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci 56:1464–1470PubMedCrossRefGoogle Scholar
  46. 46.
    Wang Z, Luo H, Pan X et al (2011) A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Sci Int Genet, doi:10.1016/j.fsigen.2011.08.008Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut für RechtsmedizinBonnDeutschland

Personalised recommendations