Skip to main content
Log in

Alkoholkonsummarker

Markers of ethanol consumption

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Alkoholkonsummarker sind im Körper gebildete Stoffe, die eine stattgehabte Alkoholaufnahme anzeigen. Diese Biomarker der Äthanolaufnahme sind bei unverändert hohem Alkoholkonsum in der Bevölkerung für klinische, forensische und verkehrsmedizinische Fragestellungen von hoher Relevanz. Während vormals nur die indirekten Marker wie „carbohydrate deficient transferrin“, γ-Glutamyltransferase und mittleres korpuskuläres Erythrozytenvolumen zur Diagnostik herangezogen wurden, wird in jüngerer Zeit den direkten Konsummarkern vermehrt Beachtung geschenkt. Die indirekten Marker setzen längerfristig gesteigerten Alkoholkonsum voraus, da sie z. B. eine Zellschädigung oder eine Enzyminduktion anzeigen und dadurch Hinweise auf eine übermäßige Alkoholaufnahme geben. Ein geringer Prozentsatz des aufgenommenen Äthanols wird nichtoxidativ in einer Phase-II-Reaktion durch Kopplung an körpereigene Substanzen, wie z. B. Glukuronsäure oder Phosphatidylcholin, verstoffwechselt. Die dadurch gebildeten Verbindungen stellen direkte Alkoholkonsummarker dar, die teilweise bereits nach Konsum kleinster Mengen Äthanols entstehen. Die Einsatzmöglichkeiten der Alkoholkonsummarker sind vielfältig. Hohe Markerkonzentrationen lassen eine Früherkennung von Alkoholmissbrauch und -abhängigkeit zu und dienen auf diesem Wege der Gesundheitsfürsorge. In der Arbeitsmedizin steht die Unfallvermeidung im Vordergrund; in der Verkehrsmedizin und im Rahmen von Alkoholentwöhnungstherapien wird anhand der Marker eine geforderte Abstinenz überprüft.

Abstract

Ethanol consumption markers are formed endogenously and are indicative of the ingestion of ethanol. Due to the high and wide-spread ethanol consumption in the population these biomarkers are of high relevance for clinical and forensic questions as well as issues of traffic medicine. In former times the so-called indirect markers, such as carbohydrate-deficient transferrin, γ-glutamyltransferase and mean corpuscular volume were mainly used for diagnostic purposes but nowadays more attention is paid to the direct markers. Long-term increased intake of ethanol causes abnormal concentrations and deviations of indirect markers because they indicate cell damage or enzyme induction and therefore evidence of excessive ethanol consumption. In contrast direct markers are metabolites of ethanol itself and are formed in a non-oxidative phase II reaction by conjunction of ethanol and endogenous substances such as glucuronic acid or phosphatidylcholine. Some direct markers even occur after the uptake of trace amounts of ethanol. The use of ethanol consumption markers is manifold and high marker concentrations can contribute to an early diagnosis of ethanol misuse and dependency. In the field of occupational health markers of consumption of ethanol are applied to prevent accidents. In traffic medicine and in withdrawal therapy the markers are used for monitoring alcohol abstinence therapy and treatment adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Hannuksela ML, Liisanantti MK, Nissinen AET, Savolainen MJ (2007) Biochemical markers of alcoholism. Clin Chem Lab Med 45:953–961

    Article  CAS  PubMed  Google Scholar 

  2. Reinert DF, Allen JP (2007) The alcohol use disorders identification test: an update of research findings. Alcohol Clin Exp Res 31:185–199

    Article  PubMed  Google Scholar 

  3. Schubert W, Mattern R (Hrsg) (2009) Urteilsbildung in der Medizinisch-Psychologischen Fahreignungsdiagnostik. Beurteilungskriterien, 2. erw. Aufl. Kirschbaum, Bonn, S 173

  4. Sillanaukee P, Massot N, Jousilahti P et al (2000) Enhanced clinical utility of gamma-CDT in a general population. Alcohol Clin Exp Res 24:1202–1206

    CAS  PubMed  Google Scholar 

  5. Thomas L (1998) Gamma glutamyltransferase (GGT). In: Thomas L (Hrsg) Clinical laboratory diagnostics. TH-Books, Frankfurt a.M., S 80–86

  6. Daeppen JB, Smith TL, Schuckit MA (1998) Influence of age and body mass index on gamma-glutamyltransferase activity: a 15-year follow-up evaluation in a community sample. Alcohol Clin Exp Res 22:941–944

    CAS  PubMed  Google Scholar 

  7. Niemelä O (2007) Biomarkers in alcoholism. Clin Chim Acta 377:39–49

    Article  PubMed  CAS  Google Scholar 

  8. Puukka K, Hietala J, Koivisto H et al (2006) Age-related changes on serum GGT activity and the assessment of ethanol intake. Alcohol Alcohol 41:522–527

    CAS  PubMed  Google Scholar 

  9. Bell H, Tallaksen C, Sjaheim T et al (1993) Serum carbohydrate-deficient transferrin as a marker of alcohol consumption in patients with chronic liver diseases. Alcohol Clin Exp Res 17:246–252

    Article  CAS  PubMed  Google Scholar 

  10. Hock B, Schwarz M, Domke I et al (2005) Validity of carbohydrate-deficient transferrin (%CDT), gamma-glutamyltransferase (γ-GT) and mean corpuscular erythrocyte volume (MCV) as biomarkers for chronic alcohol abuse: a study in patients with alcohol dependence and liver disorders of non-alcoholic and alcoholic origin. Addiction 100:1477–1486

    Article  CAS  PubMed  Google Scholar 

  11. Yersin B, Nicolet JF, Decrey H et al (1995) Screening for excessive alcohol drinking. Comparative value of carbohydrate-deficient transferrin, gamma-glutamyltransferase, and mean corpuscular volume. Arch Intern Med 155:1907–1911

    Article  CAS  PubMed  Google Scholar 

  12. Conigrave KM, Degenhardt LJ, Whitfield JB et al (2002) CDT, GGT, and AST as markers of alcohol use: the WHO/ISBRA collaborative project. Alcohol Clin Exp Res 24:332–339

    Google Scholar 

  13. Hietala J, Koivisto H, Anttila P, Niemelä O (2006) Comparison of the combined marker GGT-CDT and the conventional laboratory markers of alcohol abuse in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcohol 41:528–533

    CAS  PubMed  Google Scholar 

  14. Wurst FM, Kempter C, Seidl S, Alt A (1999) Ethyl glucuronide – a marker of recent alcohol consumption and a relapse marker with clinical and forensic implications. Alcohol Alcohol 34:71–77

    CAS  PubMed  Google Scholar 

  15. Arndt T (2003) Asialotransferrin – an alternative to carbohydrate-deficient transferring? Clin Chem 49:1022–1023

    Article  PubMed  Google Scholar 

  16. Helander A, Eriksson G, Stibler H, Jeppsson JO (2001) Interference of transferrin isoform types with carbohydrate-deficient transferrin quantification in the identification of alcohol abuse. Clin Chem 47:1225–1233

    CAS  PubMed  Google Scholar 

  17. Legros FJ, Nuyens V, Minet E et al (2002) Carbohydrate-deficient transferrin isoforms measured by capillary zone electrophoresis for detection of alcohol abuse. Clin Chem 48:2177–2186

    CAS  PubMed  Google Scholar 

  18. Bortolotti F, De Paoli G, Pascali JP et al (2005) Analysis of carbohydrate-deficient transferrin: comparative evaluation of turbidimetric immunoassay, capillary zone electrophoresis, and HPLC. Clin Chem 51:2368–2371

    Article  CAS  PubMed  Google Scholar 

  19. Helander A, Wielders JP, Te SR, Bergström JP (2005) Comparison of HPLC and capillary electrophoresis for confirmatory testing of the alcohol misuse marker carbohydrate-deficient transferrin. Clin Chem 51:1528–1531

    Article  CAS  PubMed  Google Scholar 

  20. Keating J, Cheung C, Peters TJ, Sherwood RA (1998) Carbohydrate deficient transferrin in the assessment of alcohol misuse: absolute or relative measurements? A comparison of two methods with regard to total transferrin concentration. Clin Chim Acta 272:159–169

    Article  CAS  PubMed  Google Scholar 

  21. Bortolotti F, De Paoli G, Tagliaro F (2006) Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001–2005. J Chromatogr B Analyt Technol Biomed Life Sci 841:96–109

    Article  CAS  PubMed  Google Scholar 

  22. Löf K, Lindros K, Seppä K et al (1996) The effect of ethanol or hepatotoxin exposure on rat transferrin desialylation. Alcohol Alcohol 31:445–451

    PubMed  Google Scholar 

  23. Stibler H (1991) Carbohydrate-deficient transferring in serum: a new marker of potentially harmful alcohol consumption reviewed. Clin Chem 37:2029–2037

    CAS  PubMed  Google Scholar 

  24. Arndt T (2001) Carbohydrate-deficient transferrin as a marker of chronic alcohol abuse: a critical review of preanalysis, analysis, and interpretation. Clin Chem 47:13–27

    CAS  PubMed  Google Scholar 

  25. Sillanaukee P, Strid N, Allen JP, Litten RZ (2001) Possible reasons why heavy drinking increases carbohydrate-deficient transferrin. Alcohol Clin Exp Res 25:34–40

    Article  CAS  PubMed  Google Scholar 

  26. Xin Y, Lasker JM, Lieber CS (1995) Serum carbohydrate-deficient transferrin: mechanism of increase after chronic alcohol intake. Hepatology 22:1462–1468

    CAS  PubMed  Google Scholar 

  27. Allen JP, Litten RZ, Fertig JB, Sillanaukee P (2000) Carbohydrate-deficient transferrin, γ-glutamyltransferase, and macrocytic volume as biomarkers of alcohol problems in women. Alcohol Clin Exp Res 24:492–496

    CAS  PubMed  Google Scholar 

  28. Murawaki Y, Sugisaki H, Yuasa I, Kawasaki H (1997) Serum carbohydrate-deficient transferrin in patients with nonalcoholic liver disease and with hepatocellular carcinoma. Clin Chim Acta 259:97–108

    Article  CAS  PubMed  Google Scholar 

  29. Stauber RE, Stepan V, Trauner M et al (1995) Evaluation of carbohydrate-deficient transferrin for detection of alcohol abuse in patients with liver dysfunction. Alcohol Alcohol 30:171–176

    CAS  PubMed  Google Scholar 

  30. Fleming MF, Anton RF, Spies CD (2004) A review of genetic, biological, pharmacological, and clinical factors that affect carbohydrate-deficient transferrin levels. Alcohol Clin Exp Res 28:1347–1355

    Article  PubMed  Google Scholar 

  31. Rosman AS, Lieber CS (1990) Biochemical markers of alcohol consumption. Alcohol Health Res World 14:208–218

    Google Scholar 

  32. Salaspuro M (1994) Biological state markers of alcohol abuse. Alcohol Health Res World 18:131–139

    Google Scholar 

  33. Hernandez-Munoz R, Baraona E, Blacksberg I, Lieber CS (1989) Characterization of the increased bindings of acetaldehyde to red blood cells in alcoholics. Alcohol Clin Exp Res 13:654–659

    Article  CAS  PubMed  Google Scholar 

  34. Latvala J, Parkkila S, Melkko J, Niemelä O (2001) Acetaldehyde adducts in blood and bone marrow of patients with ethanol-induced erythrocyte abnormalities. Mod Med 7:401–405

    CAS  Google Scholar 

  35. Niemelä O, Parkkila S (2004) Alcoholic macrocytosis – is there a role for acetaldehyde and adducts? Addict Biol 9:3–10

    Article  PubMed  CAS  Google Scholar 

  36. Peterson CM, Jovanovic-Peterson L, Schmid-Formby F (1988) Rapid association of acetaldehyde with haemoglobin in human volunteers after low dose ethanol. Alcohol 5:371–374

    Article  CAS  PubMed  Google Scholar 

  37. Tyulina OV, Prokopieva VD, Boldyrev AA, Johnson P (2006) Erythrocyte and plasma protein modification in alcoholism: a possible role of acetaldehyde. Biochim Biophys Acta 1762:558–563

    CAS  PubMed  Google Scholar 

  38. Koivisto H, Hietala J, Anttila P et al (2006) Long-term ethanol consumption and macrocytosis: diagnostic and pathogenetic implications. J Lab Clin Med 147:191–196

    Article  CAS  PubMed  Google Scholar 

  39. Buchholtz U (1993) Blutmethanol als Alkoholismusmarker. Blutalkohol 30:43–51

    CAS  PubMed  Google Scholar 

  40. Iffland R, Balling MP, Börsch G et al (1994) Zur Wertung erhöhter Spiegel von GGT, CDT, Methanol, Aceton und Isopropanol im Blut alkoholauffälliger Kraftfahrer. Blutalkohol 31:273–314

    CAS  PubMed  Google Scholar 

  41. Schmitt G, Aderjan R (2000) Abstinenzkontrolle durch Überprüfung des Ethanolstoffwechsels (Ethylglucuronid). In: Aderjan R (Hrsg) Marker missbräuchlichen Alkoholkonsums. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 69–81

  42. Mani JC, Pietruszko R, Theorell H (1970) Methanol activity of alcohol dehydrogenases from human liver, horse liver, and yeast. Arch Biochem Biophys 140:52–59

    Article  CAS  PubMed  Google Scholar 

  43. Gilg T, Meyer L von, Liebhardt E (1987) Zur Bildung und Akkumulation von endogenem Methanol unter Äthanolbelastung. Blutalkohol 24:321–332

    CAS  PubMed  Google Scholar 

  44. Iffland R (2000) Zur Analyse des Alkoholmissbrauchs in der Forensik. In: Aderjan R (Hrsg) Marker missbräuchlichen Alkoholkonsums. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 44–56

  45. Aradottir S, Moller K, Alling C (2004) Phosphatidylethanol formation and degradation in human and rat blood. Alcohol Alcohol 39:8–13

    CAS  PubMed  Google Scholar 

  46. Tolonen A, Letho TM, Hannuksela ML, Savolainen MJ (2005) A method for determination of phosphatidylethanol from high density lipoproteins by reversed-phase HPLC with TOF-MS detection. Anal Biochem 341:83–88

    Article  CAS  PubMed  Google Scholar 

  47. Varga A, Alling C (2002) Formation of phosphatidylethanol in vitro in red blood cells from healthy volunteers and chronic alcoholics. J Lab Clin Med 140:79–83

    CAS  PubMed  Google Scholar 

  48. Varga A, Nilsson S (2008) Nonaqueous capillary electrophoresis for analysis of the ethanol consumption biomarker phosphatidylethanol. Electrophoresis 329:1667–1671

    Article  CAS  Google Scholar 

  49. Yon C, Han JS (2000) Analysis of trimethyl derivatization products of phosphatidylethanol by gas chromatography-mass spectrometry. Exp Mol Med 32:243–245

    CAS  PubMed  Google Scholar 

  50. Varga A, Hansson P, Johnson G, Alling C (2000) Normalization rate and cellular localization of phosphatidylethanol in whole blood from chronic alcoholics. Clin Chim Acta 299:141–150

    Article  CAS  PubMed  Google Scholar 

  51. Wurst FM, Alexson S, Wolfersdorf M et al (2004) Concentration of fatty acid ethyl esters in hair of alcoholics: comparison to other biological state markers and self-reported ethanol intake. Alcohol Alcohol 39:33–38

    CAS  PubMed  Google Scholar 

  52. Mallach HJ (1966) Über den Verlauf von Blutalkoholkurven nach Biergenuß. Blutalkohol 3:308–319

    Google Scholar 

  53. Wille R, Steigleder E (1966) Zur Frage der Rückrechnungen von niedrigen Blutalkoholkonzentrationen. Blutalkohol 3:419–435

    Google Scholar 

  54. Jones AW (2006) Urine as a biological specimen for forensic analysis of alcohol and variability in the urine-to-blood relationship. Toxicol Rev 25:15–35

    Article  CAS  PubMed  Google Scholar 

  55. Criteria Committee, National Council on Alcoholism (1972) Criteria for the diagnosis of alcoholism. Ann Intern Med 77:249–258

    Google Scholar 

  56. Salaspuro M (1986) Conventional and coming laboratory markers of alcoholism and heavy drinking. Alcohol Clin Exp Res 10 (6 Suppl):5–12

    Article  Google Scholar 

  57. Diczfalusy MA, Bjorkhelm I, Einarsson C et al (2001) Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids in humans. J Lipid Res 42:1025–1032

    CAS  PubMed  Google Scholar 

  58. Hannuksela ML, Liisanantti MK, Savolainen MJ (2002) Effect of alcohol on lipids and lipoproteins in relation to atherosclerosis. Crit Rev Clin Lab Sci 39:225–283

    Article  CAS  PubMed  Google Scholar 

  59. Pragst F, Auwärter V, Sporkert F, Spiegel K (2001) Analysis of fatty acid ethyl esters in hair as possible markers of chronically elevated alcohol consumption by headspace solid-phase microextraction and gas chromatography-mass spectrometry (GC-MS). Forensic Sci Int 121:76–88

    Article  CAS  PubMed  Google Scholar 

  60. Borucki K, Dierkes J, Wartberg J et al (2007) In heavy drinkers, fatty acid ethyl esters remain elevated for up to 99 hours. Alcohol Clin Exp Res 31:423–427

    Article  CAS  PubMed  Google Scholar 

  61. Doyle KM, Cluette-Brown JE, Dube MM et al (1996) Fatty acid ethyl esters in the blood as markers for ethanol intake. JAMA 276:1152–1156

    Article  CAS  PubMed  Google Scholar 

  62. Hartwig S, Auwärter V, Pragst F (2003) Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption. Forensic Sci Int 131:90–97

    Article  CAS  PubMed  Google Scholar 

  63. Pragst F, Auwärter V, Kiessling B, Dyes C (2004) Wipe-test and patch-test for alcohol misuse based on the concentration ratio of fatty acid ethyl esters and squalene CFAEE/CSQ in skin surface lipids. Forensic Sci Int 143:77–86

    Article  CAS  PubMed  Google Scholar 

  64. Pragst F, Yegles M (2008) Determination of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in hair: a promising way for retrospective detection of alcohol abuse during pregnancy? Ther Drug Monit 30:255–263

    Article  CAS  PubMed  Google Scholar 

  65. Beck O, Helander A (2003) 5-Hydroxytryptophol as a marker for recent alcohol intake. Addiction 98 (Suppl 2):63–72

    Article  PubMed  Google Scholar 

  66. Helander A, Beck O, Jacobsson G et al (1992) Characterization of elevated urinary 5-hydroxytryptophol as a marker of recent alcohol consumption. Alcohol Clin Exp Res 16:607

    Google Scholar 

  67. Borucki K, Schreiner R, Dierkes J et al (2005) Detection of recent ethanol intake with new markers: comparison of fatty acid ethyl esters in serum and of ethyl glucuronide and the ratio of 5-hydroxytryptophol to 5-hydroxyindole acetic acid in urine. Alcohol Clin Exp Res 29:781–787

    Article  CAS  PubMed  Google Scholar 

  68. Helander A, Beck O, Borg S (1994) The use of 5-hydroxytryptophol as an alcohol intake marker. Alcohol Alcohol Suppl 2:497–502

    CAS  PubMed  Google Scholar 

  69. Helander A, Beck O, Jacobsson G et al (1993) Time course of ethanol-induced changes in serotonin metabolism. Life Sci 53:847–855

    Article  CAS  PubMed  Google Scholar 

  70. Helander A, Wikström T, Löwenmo C et al (1992) Urinary excretion of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol after oral loading with serotonin. Life Sci 50:1207–1213

    Article  CAS  PubMed  Google Scholar 

  71. Helander A, Beck O, Jones AW (1996) Laboratory testing for recent alcohol consumption: comparison of ethanol, methanol, and 5-hydroxytryptophol. Clin Chem 42:618–624

    CAS  PubMed  Google Scholar 

  72. Helander A, Beck O, Borg S (1997) 5-Hydroxytryptophol (5-HTOL), a new sensitive urinary test of recent alcohol consumption. In: Mercier-Guyon C (Hrsg) Proceedings of the 14th International Conference on Alcohol, Drugs and Traffic Society, Annecy, S 223–228

  73. Sillanaukee P (1996) Laboratory markers of alcohol abuse. Alcohol Alcohol 31:613–616

    CAS  PubMed  Google Scholar 

  74. Kamil IA, Smith JN, Williams RT (1952) A new aspect of ethanol metabolism: isolation of ethyl glucuronide. Biochem J 51:32–33

    Google Scholar 

  75. Dahl H, Stephanson N, Beck O, Helander A (2002) Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide. J Anal Toxicol 26:201–204

    CAS  PubMed  Google Scholar 

  76. Bock KW (2003) Vertebrate UDP-glucuronosyltransferases: functional and evolutionary aspects. Biochem Pharmacol 66:691–696

    Article  CAS  PubMed  Google Scholar 

  77. Foti RS, Fisher MB (2005) Assessment of UDP-glucuronosyltransferase catalyzed formation of ethyl glucuronide in human liver microsomes and recombinant UGTs. Forensic Sci Int 153:109–116

    Article  CAS  PubMed  Google Scholar 

  78. Halter CC, Dresen S, Auwärter V et al (2008) Kinetics in serum and urinary excretion of ethyl sulfate and ethyl glucuronide after medium dose ethanol intake. Int J Legal Med 122:123–128

    Article  PubMed  Google Scholar 

  79. Schmitt G, Droenner P, Skopp G, Aderjan R (1997) Ethyl glucuronide concentration in serum of human volunteers, teetotallers and suspected drinking drivers. J Forensic Sci 42:1099–1102

    CAS  PubMed  Google Scholar 

  80. Schmitt G, Drönner P, Aderjan R, Skopp G (1997) Blutprobe mit 1,44‰ Ethanol enthielt kein Ethylglucuronid – Fallbericht. Blutalkohol 34:371–378

    Google Scholar 

  81. Høiseth G, Bernard JP, Karinen R et al (2007) A pharmacokinetic study of ethyl glucuronide in blood and urine: applications to forensic toxicology. Forensic Sci Int 172:119–124

    Article  PubMed  CAS  Google Scholar 

  82. Droenner P, Schmitt G, Aderjan R, Zimmer H (2002) A kinetic model describing the pharmacokinetics of ethyl glucuronide in humans. Forensic Sci Int 126:24–29

    Article  CAS  PubMed  Google Scholar 

  83. Alt A, Wurst FM, Seidl S (1997) Bestimmung von Ethylglucuronid in Urinproben mit dem internen Standard d5-Ethylglucuronid. Blutalkohol 34:360–365

    CAS  Google Scholar 

  84. Helander A, Böttcher M, Fehr C et al (2009) Detection times for urinary ethyl glucuronide and ethyl sulfate in heavy drinkers during alcohol detoxification. Alcohol Alcohol 44:55–61

    CAS  PubMed  Google Scholar 

  85. Wurst FM, Seidl S, Ladewig D et al (2002) Ethyl glucuronide: on the time course of excretion in urine during detoxification. Addict Biol 7:427–434

    Article  CAS  PubMed  Google Scholar 

  86. Appenzeller BMR, Agirman R, Neuberg P et al (2007) Segmental determination of ethyl glucuronide in hair: a pilot study. Forensic Sci Int 173:87–92

    Article  CAS  PubMed  Google Scholar 

  87. Bendroth P, Kronstrand R, Helander A et al (2008) Comparison of ethyl glucuronide in hair with phosphatidylethanol in whole blood as post-mortem markers of alcohol abuse. Forensic Sci Int 176:76–81

    CAS  PubMed  Google Scholar 

  88. Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370:17–49

    Article  CAS  PubMed  Google Scholar 

  89. Skopp G, Schmitt G, Pötsch L et al (2000) Ethyl glucuronide in human hair. Alcohol Alcohol 35:283–285

    CAS  PubMed  Google Scholar 

  90. Alt A, Janda I, Seidl S, Wurst FM (2000) Determination of ethyl glucuronide in hair samples. Alcohol Alcohol 35:313–314

    CAS  PubMed  Google Scholar 

  91. Janda I, Weinmann W, Kuehnle T et al (2002) Determination of ethyl glucuronide in human hair by SPE and LC-MS/MS. Forensic Sci Int 128:59–65

    Article  CAS  PubMed  Google Scholar 

  92. Yegles M, Labarthe A, Auwärter V et al (2004) Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers. Forensic Sci Int 145:167–173

    Article  CAS  PubMed  Google Scholar 

  93. Pragst F, Spiegel K, Sporkert F, Bohnenkamp M (2000) Are there possibilities for the detection of chronically elevated alcohol consumption by hair analysis? A report about the state of investigation. Forensic Sci Int 107:201–223

    Article  CAS  PubMed  Google Scholar 

  94. Wurst FM, Yegles M, Alling C et al (2008) Measurement of direct ethanol metabolites in a case of a former driving under the influence (DUI) of alcohol offender, now claiming abstinence. Int J Legal Med 122:235–239

    Article  PubMed  Google Scholar 

  95. Politi L, Zucchella A, Morini L et al (2007) Markers of chronic alcohol use in hair: comparison of ethyl glucuronide and cocaethylene in cocaine users. Forensic Sci Int 172:23–27

    Article  CAS  PubMed  Google Scholar 

  96. Politi L, Morini L, Leone F, Polettini A (2006) Ethyl glucuronide in hair: is it a reliable marker of chronic high levels of alcohol consumption? Addiction 101:1408–1412

    Article  PubMed  Google Scholar 

  97. Appenzeller BMR, Schuman M, Yegles M, Wennig R (2007) Ethyl glucuronide concentration in hair is not influenced by pigmentation. Alcohol Alcohol 42:326–327

    CAS  PubMed  Google Scholar 

  98. Kintz P, Villain M, Vallet E et al (2008) Ethyl glucuronide: unusual distribution between head hair and pubic hair. Forensic Sci Int 176:87–90

    Article  CAS  PubMed  Google Scholar 

  99. Erim Y, Böttcher M, Dahmen U et al (2007) Urinary ethyl glucuronide testing detects alcohol consumption in alcoholic liver disease patients awaiting liver transplantation. Liver Transpl 13:757–761

    Article  PubMed  Google Scholar 

  100. Seidl S, Wurst FM, Alt A (1998) Überprüfung einer Abstinenzbehauptung in der Fahreignungs. Oberbegutachtung mit Hilfe des Ethanolmetaboliten Ethylglucuronid (EtG). Blutalkohol 35:174–182

    CAS  Google Scholar 

  101. Seidl S, Wurst FM, Alt A (2001) Ethyl glucuronide – a biomarker for recent alcohol consumption. Addict Biol 6:205–212

    Article  CAS  PubMed  Google Scholar 

  102. Wurst FM, Seidl S, Sachs H et al (1995) Ethyl glucuronide – evaluation of a new marker of alcoholism. Alcohol Alcohol 30:560

    Google Scholar 

  103. Wurst FM, Seidl S, Alt A (1998) Ethylglukuronid – Evaluation eines Single-relapse markers. Nervenarzt 69:84

    Google Scholar 

  104. Wurst FM, Kempter C, Metzger J et al (2000) Ethyl glucuronide: a marker of recent alcohol consumption with clinical and forensic implications. Alcohol 20:111–116

    Article  CAS  PubMed  Google Scholar 

  105. Wurst FM, Metzger J, WHO/ISBRA Study on State and Markers of Alcohol Use and Dependence Investigators (2002) The ethanol conjugate ethyl glucuronide is a useful marker of recent alcohol consumption. Alcohol Clin Exp Res 26:1114–1119

    Article  CAS  PubMed  Google Scholar 

  106. Wurst FM, Skipper GE, Weinmann W (2003) Ethyl glucuronide – the direct ethanol metabolite on the threshold from science to routine use. Addiction 98 (Suppl 2):51–61

    Article  PubMed  Google Scholar 

  107. Helander A, Olsson I, Dahl H (2007) Postcollection synthesis of ethyl glucuronide by bacteria in urine may cause false identification of alcohol consumption. Clin Chem 53:1855–1857

    Article  CAS  PubMed  Google Scholar 

  108. Jones AW, Hylen L, Svensson E, Helander A (1999) Storage of specimens at 4 degrees C or addition of sodium fluoride (1%) prevents formation of ethanol in urine inoculated with Candida albicans. J Anal Toxicol 23:333–336

    CAS  PubMed  Google Scholar 

  109. Jones AW, Eklund A, Helander A (2000) Misleading results of ethanol analysis in urine specimens from rape victims suffering from diabetes. J Clin Forensic Med 7:144–146

    Article  CAS  PubMed  Google Scholar 

  110. Saady JJ, Poklis A, Dalton HP (1993) Production of urinary ethanol after sample collection. J Forensic Sci 38:1467–1471

    CAS  PubMed  Google Scholar 

  111. Sulkowski HA, Wu AH, McCarter YS (1995) In-vitro-production of ethanol in urine by fermentation. J Forensic Sci 40:990–993

    CAS  PubMed  Google Scholar 

  112. Beyer J, Gerostamoulos D, Drummer O (2007) Comments on „The effect of the use of mouthwash on ethylglucuronide concentration in urine“. J Anal Toxicol 31:294–295

    PubMed  Google Scholar 

  113. Costantino A, Digregorio EJ, Korn W et al (2006) The effect of the use of mouthwash on ethyl glucuronide concentration in urine. J Anal Toxicol 30:659–662

    CAS  PubMed  Google Scholar 

  114. Rohrig TP, Huber C, Goodson L, Ross W (2006) Detection of ethyl glucuronide in urine following the application of Germ-X. J Anal Toxicol 30:703–704

    CAS  PubMed  Google Scholar 

  115. Rosano TG, Lin J (2008) Ethyl glucuronide excretion in humans following oral administration of and dermal exposure to ethanol. J Anal Toxicol 32:594–600

    CAS  PubMed  Google Scholar 

  116. Helander A, Dahl H (2005) Urinary tract infection: a risk factor for false-negative urinary ethyl glucuronide but not ethyl sulphate in the detection of recent alcohol consumption. Clin Chem 51:1728–1730

    Article  CAS  PubMed  Google Scholar 

  117. Høiseth G, Karinen R, Johnsen L et al (2008) Disappearance of ethyl glucuronide during heavy putrefaction. Forensic Sci Int 176:147–151

    Article  PubMed  CAS  Google Scholar 

  118. Böttcher M, Beck O, Helander A (2008) Evaluation of a new immunoassay for urinary ethyl glucuronide testing. Alcohol Alcohol 43:46–48

    PubMed  Google Scholar 

  119. Zimmer H, Schmitt G, Aderjan R (2002) Preliminary immunochemical test for the determination of ethyl glucuronide in serum and urine: comparison of screening method results with gas chromatography-mass spectrometry. J Anal Toxicol 26:11–16

    CAS  PubMed  Google Scholar 

  120. Carlini EJ, Raftogianis RB, Wood TC et al (2001) Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasians, Chinese and African-American subjects. Pharmacogenetics 11:57–68

    Article  CAS  PubMed  Google Scholar 

  121. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41

    Article  CAS  PubMed  Google Scholar 

  122. Schneider H, Glatt H (2004) Sulpho-conjugation of ethanol in humans in vivo and by individual sulphotransferase forms in vitro. Biochem J 383:549

    Google Scholar 

  123. Thomae BA, Rifki OF, Theobald MA et al (2003) Human catecholamine sulfotransferase (SULT1A3) pharmacogenetics: functional genetic polymorphism. J Neurochem 87:809–819

    Article  CAS  PubMed  Google Scholar 

  124. Wurst FM, Dresen S, Allen JP et al (2006) Ethyl sulphate: a direct ethanol metabolite reflecting recent alcohol consumption. Addiction 101:204–211

    Article  PubMed  Google Scholar 

  125. Dresen S, Weinmann W, Wurst FM (2004) Forensic confirmatory analysis of ethyl sulphate – a new marker for alcohol consumption – by liquid chromatography/electrospray ionization/tandem mass spectrometry. J Am Soc Mass Spectrom 15:1644–1648

    Article  CAS  PubMed  Google Scholar 

  126. Helander A, Beck O (2005) Ethyl sulphate: a metabolite of ethanol in humans and a potential biomarker of acute alcohol intake. J Anal Toxicol 29:270–274

    CAS  PubMed  Google Scholar 

  127. Halter CC, Laengin A, Al-Ahmad A et al (2009) Assessment of the stability of the ethanol metabolite ethyl sulphate in standardised degradation test. Forensic Sci Int 186:52–55

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thierauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thierauf, A., Große Perdekamp, M., Weinmann, W. et al. Alkoholkonsummarker. Rechtsmedizin 21, 69–79 (2011). https://doi.org/10.1007/s00194-010-0729-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-010-0729-6

Schlüsselwörter

Keywords

Navigation