Skip to main content
Log in

Fehlerquellen mitochondrialer DNS-Datensätze und Evaluation der mtDNS-Datenbank „D-Loop-BASE“

Errors and artefacts of mitochondrial DNA data sets and evaluation of the mtDNA database “D-Loop-BASE”

  • Originalarbeit
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Die Analytik der mitochondrialen (mt) DNS hat sich als technologische Nische in der forensischen Fallarbeit etabliert. Im Vergleich zur „Standarduntersuchung“ der „short tandem repeats“ stellt sie eine große Herausforderung hinsichtlich Laborarbeit und Datenauswertung dar. A-posteriori-Analysen vorhandener mitochondrialer Datensätze sowie rezente Ringversuche haben gezeigt, dass die anonymisierte Untersuchung großer Probenzahlen—wie z. B. im Zuge der Erstellung von mtDNS-Populations-Datenbanken—ein erhöhtes Fehlerrisiko aufweisen; die Fehler werden meist durch menschliches Versagen (Abschreib-, Vertauschungs- und Interpretationsfehler) verursacht. Dies trifft auch auf die Datenbank D-Loop-BASE zu, die bereits auf dem Münchner 21. Spurenworkshop der Deutschen Gesellschaft für Rechtsmedizin vorgestellt wurde. Seit dem Online-Gang im August 2001 hat sich nichts an Form und Inhalt dieser Magdeburger Datenbank geändert. Einige Testanfragen an D-Loop-BASE müssen jedoch in Zweifel ziehen, ob die Datenbank jemals intakt war. Der äußere Befund offenbart in der Tat Konzeptions- und Programmierfehler. Der innere Befund zeigt verstümmelte publizierte wie fehlerhafte unpublizierte Sequenzen auf.

Abstract

The analysis of mitochondrial (mt)DNA has become a technological niche in forensic casework, which is a challenging task for laboratories, both with regard to laboratory routine and data validation and interpretation. A posteriori analyses of mitochondrial data sets as well as recent systematic research during proficiency testing, have shown that especially the anonymized analysis of a large number of samples (as for example in the process of setting-up mtDNA population databases) is accompanied by a high risk of error. It has become apparent that not so much chemical factors or the technical equipment are to blame, but that these mistakes are usually to be traced to human error (clerical mistakes, mix-ups and false interpretation). A heightened sensibility with regard to this phenomenon is advisable particularly in forensic science, where high quality standards are essential. The project “D-Loop-BASE”, a central European database for non-coding mitochondrial sequences, was introduced in Munich at the ‘21st Workshop’ of the ‘Deutsche Gesellschaft für Rechtsmedizin’. One particular incident (test inquiry to D-Loop-BASE) raised doubts as to whether the database was functional and could produce meaningful results. The initial findings revealed errors in conception and programming. The D-Loop-BASE contained both inaccurate published data as well as unpublished and published incorrect sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alves-Silva J, Silva Santos M da, Guimarães PE, Ferreira AC, Bandelt H-J, Pena SD, Prado VF (2000) The ancestry of Brazilian mtDNA lineages. Am J Hum Genet 67:444–461, 775 (erratum)

    Article  CAS  PubMed  Google Scholar 

  2. Anderson S, Bankier AT, Barrell BG et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  3. Árnason E (2003) Genetic heterogeneity of Icelanders. Ann Hum Genet 67:5–16

    Google Scholar 

  4. Baasner A, Madea B (2000) Sequence polymorphisms of the mitochondrial DNA control region in 100 German Caucasians. J Forensic Sci 45:1343–1348

    CAS  PubMed  Google Scholar 

  5. Bär W, Brinkmann B, Budowle B et al. (2000) DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Int J Legal Med 113:193–196

    Article  PubMed  Google Scholar 

  6. Bandelt H-J (2004) Exploring reticulate patterns in DNA sequence data. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern & process. Regnum Vegetabile 142, Koeltz, Königstein (in press)

  7. Bandelt H-J, Lahermo P, Richards M, Macaulay V (2001) Detecting errors in mtDNA data by phylogenetic analysis. Int J Legal Med 115:64–69

    Article  CAS  PubMed  Google Scholar 

  8. Bandelt H-J, Quintana-Murci L, Salas A, Macaulay V (2002) The fingerprint of phantom mutations in mtDNA data. Am J Hum Genet 71:1150–1160

    Article  CAS  PubMed  Google Scholar 

  9. Dennis C (2003) Error reports threaten to unravel databases of mitochondrial DNA. Nature 421:773–774

    Article  CAS  Google Scholar 

  10. Dimo-Simonin N, Grange F, Taroni F, Brandt-Casadevall C, Mangin P (2000) Forensic evaluation of mtDNA in a population from south west Switzerland. Int J Legal Med 113:89–97

    CAS  PubMed  Google Scholar 

  11. Finnilä S, Lehtonen MS, Majamaa K (2001) Phylogenetic network for European mtDNA. Am J Hum Genet 68:1475–1484

    Article  PubMed  Google Scholar 

  12. Forster P (2003) To err is human. Ann Hum Genet 67:2–4

    Article  CAS  PubMed  Google Scholar 

  13. Freiherr von Eickstedt E (1934) Rassenkunde und Rassengeschichte der Menschheit. Enke, Stuttgart

  14. Gill P, Ivanov PL, Kimpton C et al. (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–135

    CAS  PubMed  Google Scholar 

  15. Ginther C, Issel-Tarver L, King MC (1992) Identifying individuals by sequencing mitochondrial DNA from teeth. Nat Genet 2:135–138

    CAS  PubMed  Google Scholar 

  16. Harris DJ (2003) Can you bank on GenBank? TREE 18:317–319

    Google Scholar 

  17. Herrnstadt C, Preston G, Howell N (2003) Errors, phantom and otherwise, in human mtDNA sequences. Am J Hum Genet 72:1585–1586

    Article  CAS  PubMed  Google Scholar 

  18. Holland MM, Fisher DL, Mitchell LG, Rodriquez WC, Canik JJ, Merril CR, Weedn VW (1993) Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J Forensic Sci 38:542–553

    CAS  PubMed  Google Scholar 

  19. Kattmann U (1999) Warum und mit welcher Wirkung klassifizieren Wissenschaftler Menschen? In: Kaupen-Haas H, Saller C (Hrsg) Wissenschaftlicher Rassismus: Analysen einer Kontinuität in den Human- und Naturwissenschaften. Campus, Frankfurt/Main, S 65–83

  20. Kong Q-P, Yao Y-G, Liu M, Shen S-P, Chen C, Zhu C-L, Palanichamy MG, Zhang Y-P (2003) Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum Genet 113:391–405

    Article  CAS  PubMed  Google Scholar 

  21. Monson KL, Miller KWP, Wilson MR, DiZinno JA, Budowle B (2002) The mtDNA population database: an integrated software and database resource for forensic comparison. Forensic Sci Comm 4, #2

    Google Scholar 

  22. Parson W, Parsons TJ, Scheithauer R, Holland MM (1998) Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: application of mtDNA sequence analysis to a forensic case. Int J Legal Med 111:124–132

    Article  CAS  PubMed  Google Scholar 

  23. Parson W, Brandstätter A, Alonso A et al. (2004) The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. Forensic Sci Int 139:215–226

    Article  CAS  PubMed  Google Scholar 

  24. Pfeiffer H, Brinkmann B (2000) Sequenzanalyse mitochondrialer DNA in der Rechtsmedizin: Möglichkeiten und Grenzen einer neuen Analysenmethode in der Spurenkunde. Rechtsmedizin 10:51–55

    Article  Google Scholar 

  25. Röhl A, Brinkmann B, Forster L, Forster P (2001) An annotated mtDNA database. Int J Legal Med 115:29–39

    Article  PubMed  Google Scholar 

  26. Salas A, Richards M, Fe T De la, Lareu M-V, Sobrino B, Sánchez-Diz P, Macaulay V, Carracedo A (2002) The making of the African mtDNA landscape. Am J Hum Genet 71:1082–1111

    Article  CAS  PubMed  Google Scholar 

  27. Seo Y, Stradmann-Bellinghausen B, Rittner C, Takahama K, Schneider PM (1998) Sequence polymorphism of mitochondrial DNA control region in Japanese. Forensic Sci Int 97:155–164

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan KM, Hopgood R, Gill P (1992) Identification of human remains by amplification and automated sequencing of mitochondrial DNA. Int J Legal Med 105:83–86

    CAS  PubMed  Google Scholar 

  29. Torroni A, Rengo C, Guida V et al. (2001) Do the four clades of the mtDNA haplogroup L2 evolve at different rates? Am J Hum Genet 69:1348–1356

    Article  CAS  PubMed  Google Scholar 

  30. Tully G, Bär W, Brinkmann B et al. (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91

    Article  CAS  PubMed  Google Scholar 

  31. Wilson MR, Polanskey D, Butler J, DiZinno JA, Replogle J, Budowle B (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. Biotechniques 18:662–669

    CAS  PubMed  Google Scholar 

  32. Wilson MR, DiZinno JA, Polanskey D, Replogle J, Budowle B (1995) Validation of mitochondrial DNA sequencing for forensic casework analysis. Int J Legal Med 108:68–74

    CAS  PubMed  Google Scholar 

  33. Wittig H (2000) D-Loop Base: Forensische Datenbank nichtcodierender mitochondrialer DNA-Sequenzen. Eine Analyse von 850 mtDNA-Sequenzen zentraleuropäischer Kaukasoider. Dissertation, Otto-von-Guericke-Universität, Magdeburg

  34. Wittig H, Augustin C, Baasner A et al. (2000) Mitochondrial DNA in the central european population: human identification with the help of the forensic mt-DNA D-Loop-Base database. Forensic Sci Int 113:113–118

    Article  CAS  PubMed  Google Scholar 

  35. Wittig H, Koecke M, Sattler K-U, Krause D (2003) D-Loop-BASE is online now: Central European database of mitochondrial DNA. In: Brinkmann B, Carracedo A (eds) Progress in forensic genetics 9. Elsevier, Amsterdam, pp 505–509

  36. Yao Y-G, Zhang Y-P (2003) Pitfalls in the analysis of ancient human mtDNA. Chinese Sci Bull 48:826–830

    Article  CAS  Google Scholar 

  37. Yao Y-G, Macaulay V, Kivisild T, Zhang Y-P, Bandelt H-J (2003) To trust or not to trust an idiosyncratic mitochondrial data set. Am J Hum Genet 72:1341–1346

    Article  CAS  PubMed  Google Scholar 

  38. Yao Y-G, Macaulay V, Kivisild T, Zhang Y-P, Bandelt H-J (2003) Reply to Silva et al. Am J Hum Genet 72:1348–1349

    Article  CAS  Google Scholar 

  39. Yao Y-G, Bravi CM, Bandelt H-J (2004) A call for mtDNA data quality control in forensic science. Forensic Sci Int 141:1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-J. Bandelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandelt, HJ., Parson, W. Fehlerquellen mitochondrialer DNS-Datensätze und Evaluation der mtDNS-Datenbank „D-Loop-BASE“. Rechtsmedizin 14, 251–257 (2004). https://doi.org/10.1007/s00194-004-0269-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-004-0269-z

Schlüsselwörter

Keywords

Navigation