Skip to main content
Log in

Detonation inhibition using retardant weight analysis for halogenated compounds

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The current study numerically evaluates the detonation inhibition effects of a range of halogenated compounds on hydrogen-air gaseous detonations. The halogenated compounds investigated in this research encompass halogen acids (HI, HBr, HCl, HF), halomethanes (\(\hbox {CH}_{{3}}\hbox {I}\), \(\hbox {CH}_{{3}}\hbox {Br}\), \(\hbox {CH}_{{3}}\hbox {Cl}\), \(\hbox {CH}_{{3}}\hbox {F}\)), haloethenes (\(\hbox {C}_{{2}}\hbox {H}_{{3}}\hbox {I}\), \(\hbox {C}_{{2}}\hbox {H}_{{3}}\hbox {Br}\), \(\hbox {C}_{{2}}\hbox {H}_{{3}}\hbox {Cl}\), \(\hbox {C}_{{2}}\hbox {H}_{{3}}\hbox {F}\)), haloethanes (\(\hbox {C}_{{2}}\hbox {H}_{{5}}\hbox {I}\), \(\hbox {C}_{{2}}\hbox {H}_{{5}}\hbox {Br}\), \(\hbox {C}_{{2}}\hbox {H}_{{5}}\hbox {Cl}\), \(\hbox {C}_{{2}}\hbox {H}_{{5}}\hbox {F}\)), and complex halogenated compounds (\(\hbox {CF}_{{3}}\hbox {I}\), \(\hbox {CF}_{{3}}\hbox {Br}\), \(\hbox {CF}_{{3}}\hbox {Cl}\), \(\hbox {CF}_{4}\)). The study employs a one-dimensional ZND model with detailed chemical kinetics to examine the impact on detonation propagation by adding these halogenated compounds to hydrogen-air mixtures. The effectiveness of these inhibitors is evaluated based on their capacity to increase the induction length, the amount of inhibitor needed to attenuate a detonation wave, and their influence on the detonability of the gaseous mixture under both lean and rich conditions. The results indicate that several halogenated compounds exhibit superior inhibition properties compared to Halon 1301 (\(\hbox {CF}_{{3}}\hbox {Br}\)). Specifically, \(\hbox {C}_{{2}}\hbox {H}_{{5}}\hbox {Br}\) leads to the most significant increase in the induction length, with HBr and \(\hbox {C}_{{2}}\hbox {H}_{{5}}\hbox {I}\) following closely, particularly at 20,000 ppmv concentration levels. However, it is worth noting that the inhibition efficiency also varies depending on the concentration of the inhibitor added to the gaseous \(\hbox {H}_{{2}}\)-air mixture. Moreover, based on retardant weight analysis, fluorinated compounds were found to be the most effective inhibitors, followed by chlorinated, brominated, and iodinated compounds across all categories of halogenated inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Hansen, O.R.: Hydrogen infrastructure-efficient risk assessment and design optimization approach to ensure safe and practical solutions. Process Saf. Environ. Prot. 143, 164–176 (2020). https://doi.org/10.1016/j.psep.2020.06.028

    Article  Google Scholar 

  2. Lowesmith, B.J., Hankinson, G., Johnson, D.M.: Vapour cloud explosions in a long congested region involving methane/hydrogen mixtures. Process Saf. Environ. Prot. 89, 234–247 (2011). https://doi.org/10.1016/j.psep.2011.04.002

    Article  Google Scholar 

  3. Gao, M., Bi, M., Ye, L., Li, Y., Jiang, H., Yang, M., Yan, C., Gao, W.: Suppression of hydrogen-air explosions by hydrofluorocarbons. Process Saf. Environ. Prot. 145, 378–387 (2021). https://doi.org/10.1016/j.psep.2020.08.036

    Article  Google Scholar 

  4. Westbrook, C.K.: Inhibition of hydrocarbon oxidation in laminar flames and detonations by halogenated compounds. Proc. Combust. Inst. 19(1), 127–141 (1982). https://doi.org/10.1016/S0082-0784(82)80185-9

  5. Moen, I.O., Ward, S.A., Thibault, P.A., Lee, J.H.S., Knystautas, R., Dean, T., Westbrook, C.K.: The influence of diluents and inhibitors on detonations. Proc. Combust. Inst. 20(1), 1717–1725 (1985). https://doi.org/10.1016/S0082-0784(85)80668-8

  6. Evariste, F., Lefebre, M.H., Van Tiggelen, P.J.: Inhibition of detonation wave with halogenated compounds. Shock Waves 6(1), 233–239 (1996). https://doi.org/10.1007/BF02511380

  7. Babushok, V., Noto, T., Burgess, D.R.F., Hamins, A., Tsang, W.: Influence of \(\text{CF}_{{3}}\text{ I }\), \(\text{ CF}_{{3}}\text{ Br }\), and \(\text{ CF}_{{3}}\text{ H }\) on the high-temperature combustion of methane. Combust. Flame 107(4), 351–367 (1996). https://doi.org/10.1016/S0010-2180(96)00052-1

  8. Noto, T., Babushok, V., Hamins, A., Tsang, W.: Inhibition effectiveness of halogenated compounds. Combust. Flame 112(1–2), 147–160 (1998). https://doi.org/10.1016/S0010-2180(97)81763-4

    Article  Google Scholar 

  9. Leclerc, B.F., Glaude, P.A., Come, G.M., Baronnet, F.: Inhibiting effect of \(\text{ CF}_{{3}}\text{ I }\) on the reaction between \(\text{ CH}_{{4}}\) and \(\text{ O}_{{2}}\) in a jet-stirred reactor. Combust. Flame 103(3), 285–292 (1997). https://doi.org/10.1016/S0010-2180(96)00168-X

  10. Van Tiggelen, P.J., Lefebvre, M.H.: Flame retardants effectiveness in gaseous detonation mitigation. Halon Options Working Conference (1998)

  11. Drakon, A.V., Eremin, A.V., Mikheyeva, E.Y.: On chemical inhibition of shock wave ignition of hydrogen-oxygen mixtures. J. Phys.: Conf. Ser. 946(1), 012062 (2018). https://doi.org/10.1088/1742-6596/946/1/012062

  12. Kumar, D.S., Singh, A.V.: Inhibition of hydrogen-oxygen/air gaseous detonations using \(\text{ CF}_{{3}}\text{ I }\), \(\text{ H}_{{2}}\text{ O }\), and \(\text{ CO}_{{2}}\). Fire Saf. J. 124(1), 1–13 (2021). https://doi.org/10.1016/j.firesaf.2021.103405

  13. Mathieu, O., Goulier, J., Gourmel, F., Mannan, M.S., Chaumeix, N., Petersen, E.L.: Experimental study of the effect of \(\text{ CF}_{{3}}\text{ I }\) addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane. Proc. Combust. Inst. 35(3), 2731–2739 (2015). https://doi.org/10.1016/j.proci.2014.05.096

  14. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  15. Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131(1–2), 29–46 (2002). https://doi.org/10.1016/S0010-2180(02)00390-5

    Article  Google Scholar 

  16. Vasil’ev, A.A.: Cell size as the main geometric parameter of a multifront detonation wave. J. Propul. Power 22(6), 1245–1260 (2012). https://doi.org/10.2514/1.20348

  17. Tieszen, S.R., Stamps, D.W., Westbrook, C.K., Pitz, W.J.: Gaseous hydrocarbon-air detonations. Combust. Flame 84(3–4), 367–390 (1991). https://doi.org/10.1016/0010-2180(91)90013-2

    Article  Google Scholar 

  18. Stamps, D.W., Tieszen, S.R.: The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combust. Flame 83(1), 353–364 (1991). https://doi.org/10.1016/0010-2180(91)90082-M

  19. Westbrook, C.K., Urtiew, P.A.: Chemical kinetic prediction of critical parameters in gaseous detonations. Proc. Combust. Inst. 19(1), 615–623 (1982). https://doi.org/10.1016/S0082-0784(82)80236-1

    Article  Google Scholar 

  20. Gavrikov, A.I., Efimenko, A.A., Dorofeev, S.B.: A model for detonation cell size prediction from chemical kinetics. Combust. Flame 120(1), 19–33 (2000). https://doi.org/10.1016/S0010-2180(99)00076-0

  21. Crane, J., Shi, X., Singh, A.V., Tao, Y., Wang, H.: Isolating the effect of induction length on detonation structure: hydrogen-oxygen detonation promoted by ozone. Combust. Flame 200(1), 44–52 (2018). https://doi.org/10.1016/j.combustflame.2018.11.008

  22. Kao, S., Ziegler, J.L., Bitter, N.P., Schmidt, B.E., Lawson, J., Shepherd, J.E.: SDToolbox, Numerical Tools for Shock and Detonation Wave Modeling. GALCIT Report FM2018.001, California Institute of Technology, Pasadena (2023). https://shepherd.caltech.edu/EDL/PublicResources/sdt/doc/ShockDetonation/ShockDetonation.pdf

  23. Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics. Caltech, Pasadena (2009). https://doi.org/10.5281/zenodo.48735

  24. Wang, H., Xu, R., Wang, K., Bowman, C.T., Hanson, R.K., Davidson, D.F., Brezinsky, K., Egolfopoulos, F.N.: A physics-based approach to modeling real-fuel combustion chemistry-I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame 193(1), 502–519 (2018). https://doi.org/10.1016/j.combustflame.2018.03.019

    Article  Google Scholar 

  25. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K.: USC Mech Version II. High-Temperature Combustion Reaction Model of \(\text{ H}_{{2}}/\text{C}_{\rm O}/\text{C}_{{1}}\)-\(\text{ C}_{{4}}\) Compounds (2007). https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm

  26. Kumar, D.S., Ivin, K., Singh, A.V.: Sensitizing gaseous detonations for hydrogen/ethylene-air mixtures using ozone and \(\text{ H}_{{2}}\text{ O}_{{2}}\) as dopants for application in rotating detonation engines. Proc. Combust. Inst. 38(3), 3825–3834 (2021). https://doi.org/10.1016/j.proci.2020.08.061

    Article  Google Scholar 

  27. Singh, R.K., Dahake, A., Singh, A.V.: Inhibition of \(\text{ H}_{{2}}\)-air detonations using halogenated compounds. Trans. Indian Natl. Acad. Eng. 8(1), 41–53 (2023). https://doi.org/10.1007/s41403-022-00376-6

    Article  Google Scholar 

  28. Araki, T., Yoshida, K., Morii, Y., Tsuboi, N., Hayashi, A.K.: Numerical analyses on ethylene/oxygen detonation with multistep chemical reaction mechanisms: grid resolution and chemical reaction model. Combust. Sci. Technol. 188(3), 346–369 (2016). https://doi.org/10.1080/00102202.2015.1106484

  29. Takeshima, N., Ozawa, K., Tsuboi, N., Hayashi, A.K., Morii, Y.: Numerical simulations on propane/oxygen detonation in a narrow channel using a detailed chemical mechanism: formation and detailed structure of irregular cells. Shock Waves 30, 809–824 (2020). https://doi.org/10.1007/s00193-020-00978-5

  30. Manion, A., Huie, R.E., Levin, R.D., Burgess, Jr. D.R., Orkin, V.L., Tsang, W., McGivern, W.S., Hudgens, J.W., Knyazev, V.D., Atkinson, D.B., Chai, E., Tereza, A.M., Lin, C.Y., Allison, T.C., Mallard, W.G., Westley, F., Herron, J.T., Hampson, R.F., Frizzell, D.H.: NIST Chemical Kinetics Database. NIST Standard Reference Database 17. https://kinetics.nist.gov/

  31. ANSYS CHEMKIN Theory Manual 17.0 (15151). Reaction Design, San Diego (2015)

  32. Lefebvre, M.H., Nzeyimana, E., Van Tiggelen, P.J.: Influence of fluorocarbons on \(\text{ H}_{{2}}\)-\(\text{ O}_{{2}}\)-Ar detonation: experiments and modeling. In: Kuhl, A.L., Borisov, A.A., Leyer, J.-C., Sirignano, W.C. (eds.) Dynamic Aspects of Detonations. AIAA, Progress in Astronautics and Aeronautics, vol. 153, pp. 144–161 (1993). https://doi.org/10.2514/5.9781600866265.0144.0161

Download references

Acknowledgements

The financial support from the Aeronautics Research and Development Board (ARDB) is gratefully acknowledged for the current work (Grant no. ARDB/01/1042000 M/I). The authors would also like to acknowledge the financial support from the ISRO-IITK Space Technology Cell (Grant no. 2023664 G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singh.

Additional information

Communicated by G. Ciccarelli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on work that was presented at the 29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Siheung, Korea, July 23–28, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Dahake, A. & Singh, A.V. Detonation inhibition using retardant weight analysis for halogenated compounds. Shock Waves (2024). https://doi.org/10.1007/s00193-024-01175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00193-024-01175-4

Keywords

Navigation