Skip to main content
Log in

Development of a vapor-based method for seeding alkali metals in shock tube facilities

  • Technical note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This note presents a vapor-based seeding apparatus, named the external alkali seeding instrument (EASI), which is designed to introduce alkali metal vapors into experimental facilities without using precursors or large auxiliary equipment. The device vaporizes small amounts of alkali metals, potassium in this work, which are then carried away by an inert gas. In a benchtop flow cell, carrier gas flow rate (6–\(200~\hbox {cm}^3/\hbox {s}\)) and device temperature (150–\(250\,^{\circ }\hbox {C}\)) most strongly affected potassium-vapor concentrations. Higher values of either quantity lead to increased potassium-vapor concentrations. When using the EASI to seed a shock tube experiment, vapor-phase potassium was detected immediately after the incident and reflected shockwaves using a laser absorption diagnostic. Mole fraction time histories stay within a factor of 2 over the test time as compared with those from a precursor-based seeding approach, which may span multiple orders of magnitude. This suggests potassium is nearly homogeneously distributed throughout the test gas. This design can be extended to other low-vapor-pressure elements, such as other alkalis or sulfur, with minimal modifications. The EASI simplifies seeding for laboratory experiments targeting potassium and other alkali metals—enabling advances in fundamental spectroscopy, diagnostic development, and chemical kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets used for the current study are available from the corresponding author on reasonable request.

References

  1. Burrows, A., Marley, M.S., Sharp, C.M.: The near-infrared and optical spectra of methane dwarfs and brown dwarfs. Astrophys. J. 531(1), 438–446 (2000). https://doi.org/10.1086/308462

    Article  Google Scholar 

  2. Barker, P., Bishop, A., Rubinsztein-Dunlop, H.: Supersonic velocimetry in a shock tube using laser enhanced ionisation and planar laser induced fluorescence. Appl. Phys. B Lasers Opt. 64(3), 369–376 (1997). https://doi.org/10.1007/s003400050186

    Article  Google Scholar 

  3. Littleton, B.N., Bishop, A.I., McIntyre, T.J., Rubinsztein-Dunlop, H., Barker, P.F.: Flow tagging velocimetry in a superorbital expansion tube. Shock Waves 10(3), 225–228 (2000). https://doi.org/10.1007/s001930050010

    Article  Google Scholar 

  4. Schlosser, E., Fernholz, T., Teichert, H., Ebert, V.: In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58(11), 2347–2359 (2002). https://doi.org/10.1016/S1386-1425(02)00049-5

    Article  Google Scholar 

  5. Liu, Y., Wang, Z., Xia, J., Vervisch, L., Wan, K., He, Y., Whiddon, R., Bahai, H., Cen, K.: Measurement and kinetics of elemental and atomic potassium release from a burning biomass pellet. Proc. Combust. Inst. 37(3), 2681–2688 (2019). https://doi.org/10.1016/j.proci.2018.06.042

    Article  Google Scholar 

  6. Alcock, C.B., Itkin, V.P., Horrigan, M.K.: Vapour pressure equations for the metallic elements: 298–2500 K. Can. Metall. Q. 23(3), 309–313 (1984). https://doi.org/10.1179/CMQ.1984.23.3.309

    Article  Google Scholar 

  7. Dou, B., Shen, W., Gao, J., Sha, X.: Adsorption of alkali metal vapor from high-temperature coal-derived gas by solid sorbents. Fuel Process. Technol. 82(1), 51–60 (2003). https://doi.org/10.1016/S0378-3820(03)00027-4

    Article  Google Scholar 

  8. Pickrell, G.R., Sun, T., Brown, J.J., Jr.: High temperature alkali corrosion of ceramics in coal gas. US Dept. of Energy - Pitssburgh Energy Technology Center, Technical report (1994)

    Book  Google Scholar 

  9. Li, K., Zhang, J., Barati, M., Khanna, R., Liu, Z., Zhong, J., Ning, X., Ren, S., Yang, T., Sahajwalla, V.: Influence of alkaline (Na, K) vapors on carbon and mineral behavior in blast furnace cokes. Fuel 145, 202–213 (2015). https://doi.org/10.1016/j.fuel.2014.12.086

    Article  Google Scholar 

  10. Liu, Y., Duan, X., Cao, X., Che, D., Liu, K.: Experimental study on adsorption of potassium vapor in flue gas by coal ash. Powder Technol. 318, 170–176 (2017). https://doi.org/10.1016/j.powtec.2017.05.024

    Article  Google Scholar 

  11. Zhong, J.B., Zhang, J.L., Li, K.J., Liu, Z.J., Wang, G.W., Xu, R.S., Zhao, D.: Catalytic behavior of potassium vapor on coke gasification reaction. Steel Res. Int. 88(3), 1600152 (2017). https://doi.org/10.1002/srin.201600152

    Article  Google Scholar 

  12. Plane, J.M.C.: A comparison between the oxidation reactions of the alkali and alkaline earth atoms. Gas Phase Met. React., pp. 29–56 (1992). https://doi.org/10.1016/B978-0-444-89070-2.50006-2

  13. Ban, K., Hirai, Y., Tsujimoto, K., Terao, A., Mizutani, N., Kobayashi, T., Tabata, O.: Characterization of alkali-metal vapor cells fabricated with an alkali-metal source tablet. J. Vac. Sci. Technol. A Vac. Surf. Films 34(6), 061601 (2016). https://doi.org/10.1116/1.4963108

    Article  Google Scholar 

  14. Leffler, T., Brackmann, C., Aldén, M., Li, Z.: Laser-induced photofragmentation fluorescence imaging of alkali compounds in flames. Appl. Spectrosc. 71(6), 1289–1299 (2017). https://doi.org/10.1177/0003702816681010

    Article  Google Scholar 

  15. Fay, J.A., Hogan, W.T.: Heat transfer to cold electrodes in a flowing ionized gas. Phys. Fluids 5(8), 885 (1962). https://doi.org/10.1063/1.1706703

    Article  Google Scholar 

  16. Sanders, S.T., Mattison, D.W., Jeffries, J.B., Hanson, R.K.: Digital object identifier (time-of-flight diode-laser velocimeter using a locally seeded atomic absorber: application in a pulse detonation engine. Shock Waves 12, 435–441 (2003). https://doi.org/10.1007/s00193-003-0182-5

  17. Baur, J.F., Cooper, J.: A shock tube study of line broadening in a temperature range of 6100 to 8300 K. J. Quant. Spectrosc. Radiat. Transf. 17(3), 311–322 (1977). https://doi.org/10.1016/0022-4073(77)90110-8

    Article  Google Scholar 

  18. Dukowicz, J.: Development of a seeding technique for hypersonic shock tunnel use. Fluid and Plasma Dynamics Conference, Los Angeles, CA, AIAA Paper 1968–728 (1968). https://arc.aiaa.org/doi/10.2514/6.1968-728

  19. Lau, J.: Electrical conductivity of inert gases—seed combination in shock tubes. Can. J. Phys. 42(8), 1548–1563 (1964). https://doi.org/10.1139/p64-141

    Article  Google Scholar 

  20. Zhang, X., Liu, H., Xing, H., Wang, G., Li, H., Xiao, K., Liu, W., Yu, Y., Yao, H.: Investigation of potassium vapor time-resolved adsorption and potassium-sodium competitive adsorption by modified kaolinite. Fuel 258, 116124 (2019). https://doi.org/10.1016/j.fuel.2019.116124

  21. Gale, T.K., Wendt, J.O.L.: Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures. Aerosol. Sci. Technol. 37(11), 865–876 (2003). https://doi.org/10.1080/02786820300929

    Article  Google Scholar 

  22. Leffler, T., Brackmann, C., Weng, W., Gao, Q., Aldén, M., Li, Z.: Experimental investigations of potassium chemistry in premixed flames. Fuel 203, 802–810 (2017). https://doi.org/10.1016/j.fuel.2017.05.013

    Article  Google Scholar 

  23. Slack, M., Cox, J.W., Grillo, A., Ryan, R., Smith, O.: Potassium kinetics in heavily seeded atmospheric pressure laminar methane flames. Combust. Flame 77(3–4), 311–320 (1989). https://doi.org/10.1016/0010-2180(89)90137-5

    Article  Google Scholar 

  24. Ding, Y., Vandervort, J.A., Strand, C.L., Hanson, R.K.: Shock tube measurements of high-temperature argon broadening and shift parameters for the potassium D1 and D2 resonance transitions. J. Quant. Spectrosc. Radiat. Transf. 275, 107895 (2021). https://doi.org/10.1016/j.jqsrt.2021.107895

    Article  Google Scholar 

  25. Haught, A.F.: Shock-tube investigation of the ionization of cesium vapor. Phys. Fluids 5(11), 1337–1346 (1962). https://doi.org/10.1063/1.1706529

    Article  Google Scholar 

  26. Louis, J.F.: Studies on an alkali shock tube and on an MHD generator wind tunnel. Proceedings of a Symposium on Magnetohydrodynamics Electrical Power Generation, Salzburg, Austria, vol. I, pp. 223–238 (1966). https://inis.iaea.org/search/search.aspx?orig_q=RN:44070790

  27. Yamasaki, H., Shioda, S.: MHD power generation with fully ionized seed. J. Energy 1(5), 301–305 (1977). https://doi.org/10.2514/3.47944

    Article  Google Scholar 

  28. Öz, E., Muggli, P.: A novel Rb vapor plasma source for plasma wakefield accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A 740, 197–202 (2014). https://doi.org/10.1016/j.nima.2013.10.093

  29. Harris, L.P.: Electrical conductivity of cesium-seeded atmospheric pressure plasmas near thermal equilibrium. J. Appl. Phys. 34(10), 2958–2965 (1963). https://doi.org/10.1063/1.1729102

    Article  Google Scholar 

  30. Tompa, G.S., Lopes, J.L., Wohlrab, G.: Compact efficient modular cesium atomic beam oven. Rev. Sci. Instrum. 58(8), 1536–1537 (1987). https://doi.org/10.1063/1.1139396

    Article  Google Scholar 

  31. Scheidemann, A., Kresin, V.: Loading system for alkali metal sources. Rev. Sci. Instrum. 62(8), 2046–2047 (1991). https://doi.org/10.1063/1.1142366

  32. Bewig, L., Buck, U., Mehlmann, C., Winter, M.: Seeded supersonic alkali cluster beam source with refilling system. Rev. Sci. Instrum. 63(8), 3936–3938 (1992). https://doi.org/10.1063/1.1143241

    Article  Google Scholar 

  33. Huang, C., Kresin, V.V.: Note: contamination-free loading of lithium metal into a nozzle source. Rev. Sci. Instrum. 87(6), 13–15 (2016). https://doi.org/10.1063/1.4953918

    Article  Google Scholar 

  34. Hanson, R.K., Spearrin, R.M., Goldenstein, C.S.: Spectroscopy and Optical Diagnostics for Gases. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-23252-2

    Book  Google Scholar 

  35. Hanson, R.K., Davidson, D.F.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44, 103–114 (2014). https://doi.org/10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  36. Ding, Y., Vandervort, J.A., Freedman, R.S., Strand, C.L., Marley, M.S., Hanson, R.K.: Collisional broadening and pressure shift of the potassium resonance doublets by nitrogen, helium, and hydrogen at high temperatures. J. Quant. Spectrosc. Radiat. Transf. 283, 108149 (2022). https://doi.org/10.1016/j.jqsrt.2022.108149

Download references

Acknowledgements

This material is based upon work supported by, or in part by, the National Aeronautics and Space Administration (NASA) under the Research Opportunities in Space and Earth Science (ROSES) Exoplanet Research Program Award No. 80NSSC20K0258 with Stephen Rinehart as technical monitor and the Office of Naval Research (ONR) under Award No. N00014-20-1-2322 with Eric Marineau as technical monitor. J. Vandervort acknowledges financial support from the U.S. Department of Defense through a NDSEG fellowship. S. Barnes acknowledges financial support from the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE-2146755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Vandervort.

Additional information

Communicated by R. Bonazza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandervort, J.A., Barnes, S.C., Strand, C.L. et al. Development of a vapor-based method for seeding alkali metals in shock tube facilities. Shock Waves 34, 61–67 (2024). https://doi.org/10.1007/s00193-024-01165-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-024-01165-6

Keywords

Navigation