Skip to main content
Log in

Thermo-chemical analyses of steady detonation wave using the Shock and Detonation Toolbox in Cantera

  • Technical note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We describe the implementation of several thermo-chemical analyses in Cantera and the Shock and Detonation Toolbox (SDT), that can be employed to investigate the chemical dynamics of planar steady detonation. A MATLAB graphical user interface has also been developed to post-process the data provided by the detonation codes. These utilities will be made available on request and in the future releases of the SDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data are available upon reasonable request.

References

  1. Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009). https://doi.org/10.1016/j.proci.2008.08.006

    Article  Google Scholar 

  2. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511754708

    Book  Google Scholar 

  3. Shepherd, J.E.: Chemical kinetics of hydrogen-air-diluent detonations. Prog. Astronaut. Aeronaut. 106, 263–293 (1986). https://doi.org/10.2514/5.9781600865800.0263.0293

    Article  Google Scholar 

  4. Goodwin, D., Moffat, H., Speth, R.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.2.0 (2015) http://www.cantera.org

  5. SDToolbox - Numerical tools for shock and detonation wave modeling. https://shepherd.caltech.edu/SDT

  6. Kumar, D.S., Ivin, K., Singh, A.V.: Sensitizing gaseous detonations for hydrogen/ethylene-air mixtures using ozone and H\(_{2}\)O\(_{2}\) as dopants for application in rotating detonation engines. Proc. Combust. Inst. 38(3), 3825–3834 (2021). https://doi.org/10.1016/j.proci.2020.08.061

    Article  Google Scholar 

  7. Veiga-Lopez, F., Faria, L.M., Melguizo-Gavilanes, J.: Influence of chemistry on the steady solutions of hydrogen gaseous detonations with friction losses. Combust. Flame 240, 112050 (2022). https://doi.org/10.1016/j.combustflame.2022.112050

    Article  Google Scholar 

  8. Chatelain, K.P., He, Y., Mével, R., Lacoste, D.A.: Effect of the reactor model on steady detonation modeling. Shock Waves 31, 323–335 (2021). https://doi.org/10.1007/s00193-021-01022-w

    Article  Google Scholar 

  9. Davidenko, D., Mével, R., Dupré, G.: Numerical study of the detonation structure in rich \({{\rm H}_{2}}\)\({{\rm NO}_{2}}/{{\rm N}_{2}{\rm O}_{4}}\) and very lean \({{\rm H}_{2}}\)\({{\rm N}_{2}{\rm O}}\) mixtures. Shock Waves 21(2), 85–99 (2011). https://doi.org/10.1007/s00193-011-0297-z

    Article  Google Scholar 

  10. Mével, R., Gallier, S.: Structure of detonation propagating in lean and rich dimethyl ether-oxygen mixtures. Shock Waves 28(5), 955–966 (2018). https://doi.org/10.1007/s00193-018-0837-x

    Article  Google Scholar 

  11. Liang, W., Mével, R., Law, C.K.: Role of low-temperature chemistry in detonation of n-heptane/oxygen mixtures. Combust. Flame 193, 463–470 (2018). https://doi.org/10.1016/j.combustflame.2018.03.035

    Article  Google Scholar 

  12. He, Y.Z., Mével, R.: Effect of hydroxyl radical precursor addition on LTC-affected detonation in DME-\({{\rm O}_{2}}\)\({{\rm CO}_{2}}\) mixtures. Shock Waves 30(7), 789–798 (2020). https://doi.org/10.1007/s00193-020-00974-9

    Article  Google Scholar 

  13. Mével, R., He, Y.: Effect of oxygen atom precursors addition on LTC-affected detonation in DME-\({{\rm O}_{2}}\)\({{\rm CO}_{2}}\) mixtures. Shock Waves 30, 799–807 (2020). https://doi.org/10.1007/s00193-020-00953-0

    Article  Google Scholar 

  14. Radulescu, M.I., Borzou, B.: Dynamics of detonations with a constant mean flow divergence. J. Fluid Mech. 845, 346–377 (2018). https://doi.org/10.1017/jfm.2018.244

    Article  MathSciNet  MATH  Google Scholar 

  15. Eckett, C.A., Quirk, J.J., Shepherd, J.E.: The role of unsteadiness in direct initiation of gaseous detonations. J. Fluid Mech. 421, 147–183 (2000). https://doi.org/10.1017/S0022112000001555

    Article  MathSciNet  MATH  Google Scholar 

  16. Mével, R., Melguizo-Gavilanes, J., Davidenko, D.: Ignition of hydrogen-air mixtures under volumetric expansion. Proc. Combust. Inst. 37, 3503–3511 (2019). https://doi.org/10.1016/j.proci.2018.07.124

    Article  Google Scholar 

  17. He, Y., Liu, Y.C., Mével, R.: Effect of volumetric expansion on shock-induced ignition of H\(_{2}\)–NO\(_{2}\)/N\(_{2}\)O\(_{4}\) mixtures. Combust. Flame 215, 425–436 (2020). https://doi.org/10.1016/j.combustflame.2019.12.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mével.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Weng, Z. & Mével, R. Thermo-chemical analyses of steady detonation wave using the Shock and Detonation Toolbox in Cantera. Shock Waves 32, 759–762 (2022). https://doi.org/10.1007/s00193-022-01107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01107-0

Keywords

Navigation