Skip to main content
Log in

Relationship between secondary separation and surface pressure structure in swept shock-wave/boundary-layer interaction

  • Technical note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A theoretical analysis is presented to elucidate the relationship between the skin friction topology of the secondary separation bubble and surface pressure structure in the fin-generated swept shock-wave/boundary-layer interaction. This theoretical method is based on the intrinsic relation between skin friction and surface pressure, and the variational method is applied to extract skin friction fields when the boundary enstrophy flux is modeled. The skin friction topology extracted from a surface pressure field in swept shock-wave/boundary-layer interaction is studied as the relevant parameters to surface pressure vary. It is found that the formation of the secondary separation bubble characterized as a topological change of skin friction is directly related to the geometrical features of the surface pressure plateau. The extracted skin friction topology of the secondary separation bubble is compared with computational fluid dynamics results and surface oil visualizations in two examples. The developed method provides a useful tool for understanding of complex flow structures in shock-wave/boundary-layer interactions particularly in pressure-sensitive paint measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Adapted with permission from Elsevier

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Babinsky, H., Harvey, J.K.: Shock Wave–Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511842757

    Book  MATH  Google Scholar 

  2. Knight, D., Yan, H., Panaras, A.G., Zheltovodov, A.: Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog. Aerosp. Sci. 39, 121–184 (2003). https://doi.org/10.1016/S0376-0421(02)00069-6

    Article  Google Scholar 

  3. Délery, J., Dussauge, J.-P.: Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19, 453–468 (2009). https://doi.org/10.1007/s00193-009-0220-z

    Article  MATH  Google Scholar 

  4. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39, 1517–1531 (2001). https://doi.org/10.2514/2.1476

    Article  Google Scholar 

  5. Panaras, A.G.: Review of the physics of swept-shock/boundary-layer interactions. Prog. Aerosp. Sci. 32, 173–244 (1996). https://doi.org/10.1016/0376-0421(95)00005-4

    Article  Google Scholar 

  6. Zheltovodov, A.: Shock-waves/turbulent boundary-layer interactions: fundamental studies and applications. AIAA Fluid Dynamics Conference, New Orleans, LA, AIAA Paper 96-1977 (1996). https://doi.org/10.2514/6.1996-1977

  7. Gaitonde, D.V.: Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 80–99 (2015). https://doi.org/10.1016/j.paerosci.2014.09.002

    Article  Google Scholar 

  8. Settles G.S., Dolling, D.S.: Swept shock/boundary-layer interactions—tutorial and update. 28th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 90-0375 (1990). https://doi.org/10.2514/6.1990-375

  9. Settles, G.S.: Recent skin friction technologies for compressible flows. 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference, Atlanta, GA, AIAA Paper 86-1099 (1986). https://doi.org/10.2514/6.1986-1099

  10. Dolling, D.S., Rodi, P.E.: Upstream influence and separation scales in fin-induced shock turbulent boundary-layer interaction. J. Spacecr. Rockets 25, 102–108 (1088). https://doi.org/10.2514/3.25957

    Article  Google Scholar 

  11. Settles, G.S., Kimmel, R.L.: Similarity of quasiconical shock wave/turbulent boundary-layer interactions. AIAA J. 24, 47–53 (1986). https://doi.org/10.2514/3.9221

    Article  Google Scholar 

  12. Settles, G.S., Bogdonoff, S.M.: Scaling of two- and three-dimensional shock/turbulent boundary-layer interactions at compression corners. AIAA J. 20, 782–789 (1982). https://doi.org/10.2514/3.51135

    Article  Google Scholar 

  13. Settles, G.S., Lu, F.: Conical similarity of shock/boundary-layer interactions generated by swept and unswept fins. AIAA J. 23, 1021–1027 (1985). https://doi.org/10.2514/6.1983-1756

    Article  Google Scholar 

  14. Lu, F.K.: Quasiconical free interaction between a swept shock and a turbulent boundary layer. AIAA J. 31, 686–692 (1993). https://doi.org/10.2514/3.11604

    Article  Google Scholar 

  15. Délery, J.: Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation. Annu. Rev. Fluid Mech. 33, 129–154 (2001). https://doi.org/10.1146/annurev.fluid.33.1.129

    Article  MATH  Google Scholar 

  16. Adler, M.C., Gaitonde, D.V.: Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291–341 (2018). https://doi.org/10.1017/jfm.2018.70

    Article  MathSciNet  MATH  Google Scholar 

  17. Adler, M.C., Gaitonde, D.V.: Flow similarity in strong swept-shock/turbulent-boundary-layer interactions. AIAA J. 57, 1579–1593 (2019). https://doi.org/10.2514/1.J057534

    Article  Google Scholar 

  18. Inger, G.V.: Analytical treatment of shock wave-boundary-layer interactions. In: Babinsky, H., Harvey, J.K. (eds.) Shock Wave–Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511842757

    Chapter  MATH  Google Scholar 

  19. Alvi, F.S., Settles, G.S.: Physical model of the swept shock wave/boundary-layer interaction flowfield. AIAA J. 30, 2252–2258 (1992). https://doi.org/10.2514/3.11212

    Article  Google Scholar 

  20. Garg, S., Settles, G.S.: Unsteady pressure loads generated by swept-shock-wave/boundary-layer interactions. AIAA J. 34, 1174–1181 (1996). https://doi.org/10.2514/3.13209

    Article  Google Scholar 

  21. Kim, K.-S., Lee, Y.F., Alvi, S., Settles, G.S., Horstman, C.: Skin-friction measurements and computational comparison of swept shock/boundary-layer interactions. AIAA J. 29, 1643–1650 (1991). https://doi.org/10.2514/3.10786

    Article  MATH  Google Scholar 

  22. Arora, N., Ali, M.Y., Alvi, F.S.: Flowfield measurements in a Mach 2 fin-generated shock/boundary-layer interaction. AIAA J. 56, 3963–3974 (2018). https://doi.org/10.2514/1.J056500

    Article  Google Scholar 

  23. Baldwin, A., Mears, L.J., Arora, N.F., Alvi, S., Kumar, R., Naughton, J.W.: Skin friction measurements using oil film interferometry in a 3-D supersonic flowfield. AIAA J. 57, 1373–1382 (2019). https://doi.org/10.2514/1.J057388

    Article  Google Scholar 

  24. Mears, L.J., Baldwin, A., Ali, M.Y., Kumar, R., Alvi, F.S.: Spatially resolved mean and unsteady surface pressure in swept SBLI using PSP. Exp. Fluids 61, 92 (2020). https://doi.org/10.1007/s00348-020-2924-x

    Article  Google Scholar 

  25. Baldwin, A.: Experimental characterization and flowfield analysis of a swept shock-wave/boundary-layer interaction. PhD Thesis, Department of Mechanical Engineering, Florida State University, Tallahassee, Florida (2021)

  26. Naughton, J.W., Sheplak, M.: Modern developments in shear-stress measurement. Prog. Aerosp. Sci. 38, 515–570 (2002). https://doi.org/10.1016/S0376-0421(02)00031-3

    Article  Google Scholar 

  27. Schülein, E.: Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA J. 44, 1732–1741 (2006). https://doi.org/10.2514/1.15110

    Article  Google Scholar 

  28. Naughton, J.W., Liu, T.: Photogrammetry in oil-film interferometry. AIAA J. 45, 1620–1629 (2007). https://doi.org/10.2514/1.24634

    Article  Google Scholar 

  29. Mosharov, V.E., Radchenko, V.N., Tsipilev, N.: Particle image surface visualization: step to skin-friction measurement. Visu. Mech. Proc. Int. Online J. 7(2), (2017). https://doi.org/10.1615/VisMechProc.2017019699

  30. Husen, N., Roozeboom, N., Liu, T., Sullivan, J.P.: Global skin-friction measurements using particle image surface flow visualization and a luminescent oil-film. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2015-0022 (2015). https://doi.org/10.2514/6.2015-0022

  31. Van Oudheusden, B.W., Nebbeling, C., Bannink, W.J.: Topological interpretation of the surface flow visualization of conical viscous/inviscid interactions. J. Fluid Mech. 316, 115–137 (1996). https://doi.org/10.1017/S0022112096000468

    Article  MATH  Google Scholar 

  32. Arnold, V.I.: Catastrophe Theory, 3rd edn. Springer, Berlin (1992)

    Book  Google Scholar 

  33. Liu, T., Misaka, T., Asai, K., Obayashi, S., Wu, J.Z.: Feasibility of skin-friction diagnostics based on surface pressure gradient field. Meas. Sci. Technol. 27, 125304 (2016). https://doi.org/10.1088/0957-0233/27/12/125304

    Article  Google Scholar 

  34. Liu, T.: Skin-friction and surface-pressure structures in near-wall flows. AIAA J. 56, 3887–3896 (2018). https://doi.org/10.2514/1.J057216

    Article  Google Scholar 

  35. Liu, T., Salazar, D.M., Crafton, J., Rogoshchenkov, N., Ryan, C., Woik, M.R., Davis, D.O.: Skin friction extracted from surface pressure in incident shock-wave/boundary-layer interaction. AIAA J. 59, 3910–3922 (2021). https://doi.org/10.2514/1.J060345

    Article  Google Scholar 

  36. Chen, T., Liu, T., Wang, L.-P., Chen, S.Y.: Relations between skin friction and other surface quantities in viscous flows. Phys. Fluids 31, 107101 (2019). https://doi.org/10.1063/1.5120454

    Article  Google Scholar 

  37. Chen, T., Liu, T., Dong, Z.Q., Wang, L.-P., Chen, S.Y.: Near-wall flow structures and related surface quantities in wall-bounded turbulence. Phys. Fluids 33, 065116 (2021). https://doi.org/10.1063/5.0051649

    Article  Google Scholar 

  38. Liu, T., Shen, L.: Fluid flow and optical flow. J. Fluid Mech. 614, 253–291 (2008). https://doi.org/10.1017/S0022112008003273

    Article  MathSciNet  MATH  Google Scholar 

  39. Schlichting, H.: Boundary-Layer Theory, Chapters XII and XVI, 7th edn. McGraw-Hill, New York (1979)

    Google Scholar 

  40. Hunt, J.C.R., Abell, C.J., Peterka, J.A., Woo, H.: Kinematical studies of the flows around free or surface-mounted obstacles: applying topology to flow visualization. J. Fluid Mech. 86, 179–200 (1978). https://doi.org/10.1017/S0022112078001068

    Article  Google Scholar 

  41. Liu, T.: OpenOpticalFlow: an open source program for extraction of velocity fields from flow visualization images. J. Open Res. Softw. 5, 29 (2017). https://doi.org/10.5334/jors.168

    Article  Google Scholar 

  42. Thivet, F., Knight, D., Zheltovodov, A., Maksimov, A.: Importance of limiting the turbulence stresses to predict 3D shock wave boundary layer interactions. 23rd International Symposium on Shock Waves, Ft. Worth, TX (2001)

  43. Zheltovodov, A., Schülein, E.: Three dimensional interaction of swept shock waves with turbulent boundary layer in corner configurations. Institute of Theoretical and Applied Mechanics, Preprint 34-86, USSR Academy of Sciences, Novosibirsk, p. 49 (1986) (in Russian)

  44. Zheltovodov, A.: Regimes and properties of three-dimensional separation flows initiated by skewed compression shocks. J. Appl. Mech. Tech. Phys. 23, 413–418 (1982). https://doi.org/10.1007/BF00910085

    Article  Google Scholar 

Download references

Acknowledgements

T. Liu is supported by the Presidential Innovation Professorship and the Iohn O. Hallquist Endowed Professorship at Western Michigan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Liu.

Ethics declarations

Conflict of interest

There is no competing interest.

Additional information

Communicated by F. Lu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Salazar, D.M., Mears, L.J. et al. Relationship between secondary separation and surface pressure structure in swept shock-wave/boundary-layer interaction. Shock Waves 32, 665–678 (2022). https://doi.org/10.1007/s00193-022-01102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01102-5

Keywords

Navigation