Skip to main content
Log in

Mechanisms of shock-induced initiation at micro-scale defects in energetic crystal-binder systems

  • Original article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Crystals of energetic materials, such as 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX), embedded in plastic binders are the building blocks of plastic-bonded explosives (PBX). Such heterogeneous energetic materials contain microstructural features such as sharp corners, interfaces between crystal and binder, intra- and extra-granular voids, and other defects. Energy localization or “hotspots” arise during shock interaction with the microstructural heterogeneities, leading to initiation of PBXs. In this paper, high-resolution numerical simulations are performed to elucidate the mechanistic details of shock-induced initiation in a PBX; we examine four different mechanisms: (1) shock-focusing at sharp corners or edges and its dependency on the shape of the crystal and the strength of the applied shock; (2) debonding between crystal and binder interfaces; (3) collapse of voids in the binder located near an HMX crystal; and (4) the collapse of voids within HMX crystals. Insights are obtained into the relative contributions of these mechanisms to the ignition and growth of hotspots. Understanding these mechanisms of energy localization and their relative importance for hotspot formation and initiation sensitivity of PBXs will aid in the design of energetic material-driven systems with controlled sensitivity, to prevent accidental initiation and ensure reliable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Yan, Q.-L., Zeman, S., Elbeih, A.: Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim. Acta 537, 1–12 (2012). https://doi.org/10.1016/j.tca.2012.03.009

    Article  Google Scholar 

  2. Campbell, A.W., Davis, W.C., Ramsay, J.B., Travis, J.R.: Shock initiation of solid explosives. Phys. Fluids 4, 511–521 (1961). https://doi.org/10.1063/1.1706354

    Article  Google Scholar 

  3. Menikoff, R.: Granular explosives and initiation sensitivity. LA-UR-99-6023 (1999). http://lib-www.lanl.gov/la-pubs/00796456.pdf

  4. Menikoff, R.: Pore collapse and hot spots in HMX. AIP Conference Proceedings 706, 393–396 (2004). https://doi.org/10.1063/1.1780261

  5. Lee, E.L., Tarver, C.M.: Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids 23, 2362 (1980). https://doi.org/10.1063/1.862940

    Article  Google Scholar 

  6. Tarver, C.M., Chidester, S.K., Nichols, A.L.: Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100, 5794–5799 (1996). https://doi.org/10.1021/jp953123s

    Article  Google Scholar 

  7. Handley, C.A.: Critical hotspots and flame propagation in HMX-based explosives. AIP Conference Proceedings 1426, 283–286 (2012). https://doi.org/10.1063/1.3686274

  8. Hu, Y., Brenner, D.W., Shi, Y.: Detonation initiation from spontaneous hotspots formed during cook-off observed in molecular dynamics simulations. J. Phys. Chem. C 115, 2416–2422 (2011). https://doi.org/10.1021/jp109583g

    Article  Google Scholar 

  9. Zhang, J., Jackson, T.L.: Direct detonation initiation with thermal deposition due to pore collapse in energetic materials—towards the coupling between micro- and macroscale. Combust. Theory Model. 21, 248–273 (2017). https://doi.org/10.1080/13647830.2016.1218053

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, B.P., Zhou, X., Ihara, H., Dlott, D.D.: Observing hot spot formation in individual explosive crystals under shock compression. J. Phys. Chem. A 124, 4646–4653 (2020). https://doi.org/10.1021/acs.jpca.0c02788

    Article  Google Scholar 

  11. Yeager, J.D., Luo, S.N., Jensen, B.J., Fezzaa, K., Montgomery, D.S., Hooks, D.E.: High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure. Compos. Part A Appl. Sci. Manuf. 43, 885–892 (2012). https://doi.org/10.1016/j.compositesa.2012.01.013

    Article  Google Scholar 

  12. Mang, J.T.: An optical microscopy and small-angle scattering study of porosity in thermally treated PBX 9501. AIP Conference Proceedings 820, 833–836 (2002). https://doi.org/10.1063/1.1483666

  13. Palmer, S.J.P., Field, J.E., Huntely, J.M.: Deformation, strengths and strains to failure of polymer bonded explosives. Proc. R. Soc. Lond. A. 440, 399–419 (1993). https://doi.org/10.1098/rspa.1993.0023

    Article  Google Scholar 

  14. van der Heijden, A.E.D.M., Bouma, R.H.B.: Crystallization and characterization of RDX, HMX, and CL-20. Cryst. Growth Design 4, 999–1007 (2004). https://doi.org/10.1021/cg049965a

    Article  Google Scholar 

  15. Campbell, A.W., Davis, W.C., Ramsay, J.B., Travis, J.R.: Shock initiation of solid explosives. Phys. Fluids 4, 511–521 (1961). https://doi.org/10.1063/1.1706354

    Article  Google Scholar 

  16. Baer, M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384, 351–367 (2002). https://doi.org/10.1016/S0040-6031(01)00794-8

    Article  Google Scholar 

  17. Lee Perry, W., Clements, B., Ma, X., Mang, J.T.: Relating microstructure, temperature, and chemistry to explosive ignition and shock sensitivity. Combust. Flame 190, 171–176 (2018). https://doi.org/10.1016/j.combustflame.2017.11.017

    Article  Google Scholar 

  18. Bassett, W.P., Johnson, B.P., Salvati, L., Dlott, D.D.: Pyrometry in the reaction zone of PETN- and RDX-based polymer bound explosives. AIP Conference Proceedings 2272, 030002 (2020). https://doi.org/10.1063/12.0000912

  19. Roberts, Z.A., Casey, A.D., Gunduz, I.E., Rhoads, J.F., Son, S.F.: The effects of crystal proximity and crystal-binder adhesion on the thermal responses of ultrasonically-excited composite energetic materials. J. Appl. Phys. 122, 244901 (2017). https://doi.org/10.1063/1.5005896

    Article  Google Scholar 

  20. Men, Z., Suslick, K.S., Dlott, D.D.: Thermal explosions of polymer-bonded explosives with high time and space resolution. J. Phys. Chem. C. 122, 14289–14295 (2018). https://doi.org/10.1021/acs.jpcc.8b02422

    Article  Google Scholar 

  21. Fujisawa, K., Jackson, T.L., Balachandar, S.: Influence of baroclinic vorticity production on unsteady drag coefficient in shock-particle interaction. J. Appl. Phys. 125, 084901 (2019). https://doi.org/10.1063/1.5055002

    Article  Google Scholar 

  22. Kim, S., Wei, Y., Horie, Y., Zhou, M.: Prediction of shock initiation thresholds and ignition probability of polymer-bonded explosives using mesoscale simulations. J. Mech. Phys. Solids 114, 97–116 (2018). https://doi.org/10.1016/j.jmps.2018.02.010

    Article  Google Scholar 

  23. Springer, H.K., Bastea, S., Nichols, A.L., Tarver, C.M., Reaugh, J.E.: Modeling the effects of shock pressure and pore morphology on hot spot mechanisms in HMX. Propellants Explos. Pyrotech. 43, 805–817 (2018). https://doi.org/10.1002/prep.201800082

    Article  Google Scholar 

  24. Gilbert, J., Chakravarthy, S., Gonthier, K.A.: Computational analysis of hot-spot formation by quasi-steady deformation waves in porous explosive. J. Appl. Phys. 113, 194901 (2013). https://doi.org/10.1063/1.4804932

    Article  Google Scholar 

  25. Chakravarthy, S., Gonthier, K.A., Panchadhara, R.: Analysis of mesoscale heating by piston supported waves in granular metalized explosive. Model. Simul. Mater. Sci. Eng. 21, 055016 (2013). https://doi.org/10.1088/0965-0393/21/5/055016

    Article  Google Scholar 

  26. Kapahi, A., Udaykumar, H.S.: Dynamics of void collapse in shocked energetic materials: physics of void-void interactions. Shock Waves 23, 537–558 (2013). https://doi.org/10.1007/s00193-013-0439-6

    Article  Google Scholar 

  27. Michael, L., Nikiforakis, N.: The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case. Shock Waves 29, 153–172 (2019). https://doi.org/10.1007/s00193-018-0802-8

    Article  Google Scholar 

  28. Mi, X.C., Michael, L., Ioannou, E., Nikiforakis, N., Higgins, A.J., Ng, H.D.: Meso-resolved simulations of shock-to-detonation transition in nitromethane with air-filled cavities. J. Appl. Phys. 125, 245901 (2019). https://doi.org/10.1063/1.5093990

    Article  Google Scholar 

  29. Springer, H.K., Tarver, C.M., Bastea, S.: Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX. AIP Conference Proceedings 1793, 080002 (2017). https://doi.org/10.1063/1.4971608

  30. Rai, N.K., Udaykumar, H.S.: Three-dimensional simulations of void collapse in energetic materials. Phys. Rev. Fluids 3, 033201 (2018). https://doi.org/10.1103/PhysRevFluids.3.033201

    Article  Google Scholar 

  31. Gonthier, K.A.: Modeling and analysis of reactive compaction for granular energetic solids. Combust. Sci. Technol. 175, 1679–1709 (2003). https://doi.org/10.1080/00102200302373

    Article  Google Scholar 

  32. Rai, N.K., Udaykumar, H.S.: Mesoscale simulation of reactive pressed energetic materials under shock loading. J. Appl. Phys. 118, 245905 (2015). https://doi.org/10.1063/1.4938581

    Article  Google Scholar 

  33. Zhao, P., Lee, S., Sewell, T., Udaykumar, H.S.: Tandem molecular dynamics and continuum studies of shock-induced pore collapse in TATB. Propellants Explos. Pyrotech. 45, 196–222 (2020). https://doi.org/10.1002/prep.201900382

    Article  Google Scholar 

  34. Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: Collapse of elongated voids in porous energetic materials: effects of void orientation and aspect ratio on initiation. Phys. Rev. Fluids 2, 043201 (2017). https://doi.org/10.1103/PhysRevFluids.2.043201

    Article  Google Scholar 

  35. Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: High-resolution simulations of cylindrical void collapse in energetic materials: effect of primary and secondary collapse on initiation thresholds. Phys. Rev. Fluids 2, 043202 (2017). https://doi.org/10.1103/PhysRevFluids.2.043202

    Article  Google Scholar 

  36. Das, P., Zhao, P., Perera, D., Sewell, T., Udaykumar, H.S.: Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in \(\beta \)-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (\(\beta \)-HMX). J. Appl. Phys. 130, 085901 (2021). https://doi.org/10.1063/5.0056560

    Article  Google Scholar 

  37. Rai, N.K., Escauriza, E.M., Eakins, D.E., Udaykumar, H.S.: Mechanics of shock induced pore collapse in poly(methyl methacrylate) (PMMA): comparison of simulations and experiments. J. Mech. Phys. Solids 143, 104075 (2020). https://doi.org/10.1016/j.jmps.2020.104075

    Article  MathSciNet  Google Scholar 

  38. An, Q., Goddard, W.A., Zybin, S.V., Jaramillo-Botero, A., Zhou, T.: Highly shocked polymer bonded explosives at a nonplanar interface: hot-spot formation leading to detonation. J. Phys. Chem. C 117, 26551–26561 (2013). https://doi.org/10.1021/jp404753v

    Article  Google Scholar 

  39. An, Q., Goddard, W.A., Zybin, S.V., Luo, S.-N.: Inhibition of hotspot formation in polymer bonded explosives using an interface matching low density polymer coating at the polymer-explosive Interface. J. Phys. Chem. C 118, 19918–19928 (2014). https://doi.org/10.1021/jp506501r

    Article  Google Scholar 

  40. Wang, C., Eliasson, V.: Shock wave focusing in water inside convergent structures. Int. J. Multiphys. 3, 267–281 (2012). https://doi.org/10.1260/1750-9548.6.3.267

    Article  Google Scholar 

  41. Sambasivan, S., Kapahi, A., Udaykumar, H.S.: Simulation of high speed impact, penetration and fragmentation problems on locally refined Cartesian grids. J. Comput. Phys. 235, 334–370 (2013). https://doi.org/10.1016/j.jcp.2012.10.031

    Article  MathSciNet  MATH  Google Scholar 

  42. Kapahi, A., Mousel, J., Sambasivan, S., Udaykumar, H.S.: Parallel, sharp interface Eulerian approach to high-speed multi-material flows. Comput. Fluids 83, 144–156 (2013). https://doi.org/10.1016/j.compfluid.2012.06.024

    Article  MathSciNet  MATH  Google Scholar 

  43. Kapahi, A., Sambasivan, S., Udaykumar, H.S.: A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems. J. Comput. Phys. 241, 308–332 (2013). https://doi.org/10.1016/j.jcp.2013.01.007

    Article  MathSciNet  MATH  Google Scholar 

  44. Dillard, S.I., Mousel, J.A., Shrestha, L., Raghavan, M.L., Vigmostad, S.C.: From medical images to flow computations without user-generated meshes. Int. J. Numer. Methods Biomed. Eng. 30, 1057–1083 (2014). https://doi.org/10.1002/cnm.2644

    Article  Google Scholar 

  45. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003). https://doi.org/10.1146/annurev.fluid.35.101101.161105

    Article  MathSciNet  MATH  Google Scholar 

  46. Das, P., Rai, N.K., Udaykumar, H.S.: A levelset-based sharp-interface modified ghost fluid method for high-speed multiphase flows and multi-material hypervelocity impact. In: Roy, S., De, A., Balaras, E. (eds.) Immersed Boundary Method: Development and Applications, pp. 187–226. Springer, Singapore (2020)

    Chapter  Google Scholar 

  47. Das, P., Udaykumar, H.S.: A sharp-interface method for the simulation of shock-induced vaporization of droplets. J. Comput. Phys. 405, 109005 (2020). https://doi.org/10.1016/j.jcp.2019.109005

    Article  MathSciNet  MATH  Google Scholar 

  48. de Brauer, A., Rai, N.K., Nixon, M.E., Udaykumar, H.S.: Modeling impact-induced damage and debonding using level sets in a sharp interface Eulerian framework. Int. J. Numer. Methods Eng. 115, 1108–1137 (2018). https://doi.org/10.1002/nme.5837

  49. Nassar, A., Rai, N.K., Sen, O., Udaykumar, H.S.: Modeling mesoscale energy localization in shocked HMX, part I: machine-learned surrogate models for the effects of loading and void sizes. Shock Waves 29, 537–558 (2019). https://doi.org/10.1007/s00193-018-0874-5

  50. Kroonblawd, M.P., Austin, R.A.: Sensitivity of pore collapse heating to the melting temperature and shear viscosity of HMX. Mech. Mater. 152, 103644 (2021). https://doi.org/10.1016/j.mechmat.2020.103644

  51. Sambasivan, S.K.: A sharp interface cartesian grid hydrocode. Doctoral Dissertation, The University of Iowa (2010). https://doi.org/10.17077/etd.b55egfyg

  52. Simo, J.C., Hughes, T.J.R.: General return mapping algorithms for rate-independent plasticity. In: Constitutive Laws for Engineering Materials: Theory and Applications, pp. 221–232. Elsevier, New York (1987)

  53. Menikoff, R., Sewell, T.D.: Constituent properties of HMX needed for mesoscale simulations. Combust. Theory Model. 6, 103–125 (2002). https://doi.org/10.1088/1364-7830/6/1/306

    Article  MATH  Google Scholar 

  54. Sewell, T.D., Menikoff, R.: Complete equation of state for \(\beta \)-HMX and implications for initiation. AIP Conference Proceedings 706, 157–162 (2004). https://doi.org/10.1063/1.1780207

  55. Yoo, C., Cynn, H., Introduction, I.: Equation of state, phase transition, decomposition of \(\beta \)-HMX (octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine) at high pressures). J. Chem. Phys. 111, 10229–10235 (1999)

    Article  Google Scholar 

  56. John, E.F.: Hot spot ignition mechanisms for explosives. Acc. Chem. Res. 25, 489–496 (1992). https://doi.org/10.1021/ar00023a002

    Article  Google Scholar 

  57. Stevens, L.L., Velisavljevic, N., Hooks, D.E., Dattelbaum, D.M.: Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder X-ray diffraction. Propellants Explos. Pyrotechn. 33, 286–295 (2008). https://doi.org/10.1002/prep.200700270

    Article  Google Scholar 

  58. Wescott, B.L., Stewart, D.S., Davis, W.C.: Equation of state and reaction rate for condensed-phase explosives. J. Appl. Phys. 98, 053514 (2005). https://doi.org/10.1063/1.2035310

    Article  Google Scholar 

  59. Najjar, F.M., Howard, W.M., Fried, L.E.: Grain-scale simulations of hot-spot initiation for shocked TATB. AIP Conference Proceedings 1195, pp. 49–52 (2009). https://doi.org/10.1063/1.3295184

  60. Mas, E.M., Clements, B.E., Blumenthal, B., Cady, C.M., Gray, G.T., Liu, C.: A viscoelastic model for PBX binders. AIP Conference Proceedings 620, 661–664 (2002). https://doi.org/10.1063/1.1483625

  61. Sun, Q., Hossack, J.A., Tang, J., Acton, S.T.: Speckle reducing anisotropic diffusion for 3D ultrasound images. Comput. Med. Imaging Graph. 28, 461–470 (2004). https://doi.org/10.1016/j.compmedimag.2004.08.001

  62. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001). https://doi.org/10.1109/83.902291

    Article  MATH  Google Scholar 

  63. Sambasivan, S.K., Udaykumar, H.S.: Sharp interface simulations with Local Mesh Refinement for multi-material dynamics in strongly shocked flows. Comput. Fluids 39, 1456–1479 (2010). https://doi.org/10.1016/j.compfluid.2010.04.014

    Article  MathSciNet  MATH  Google Scholar 

  64. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152, 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  65. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32–78 (1989). https://doi.org/10.1016/0021-9991(89)90222-2

  66. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2

  67. Rai, N.K.: Numerical framework for mesoscale simulation of heterogeneous energetic materials. PhD Thesis, University of Iowa (2015). https://doi.org/10.17077/etd.tiq54x33

  68. Skidmore, C.B., Phillips, D.S., Son, S.F., Asay, B.W.: Characterization of HMX particles in PBX 9501. AIP Conference Proceedings 429, 579–582 (1998). https://doi.org/10.1063/1.55666

Download references

Acknowledgements

This work was supported by an AFOSR-MURI Grant (Grant No.: FA9550-19-1-0318; program manager: Martin Schmidt). The authors acknowledge illuminating discussions with Dana D. Dlott (Department of Chemistry, University of Illinois Urbana-Champaign), Xuan Zhou (Department of Chemistry, University of Illinois Urbana-Champaign), and Belinda P. Johnson (Department of Chemistry, University of Illinois Urbana-Champaign). The authors would like to thank Xuan Zhou (Department of Chemistry, University of Illinois Urbana-Champaign) for providing the high-resolution CT image of the HMX crystal in binder used for numerical simulations in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Udaykumar.

Additional information

Communicated by D. Frost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Udaykumar, H.S. Mechanisms of shock-induced initiation at micro-scale defects in energetic crystal-binder systems. Shock Waves 32, 593–616 (2022). https://doi.org/10.1007/s00193-022-01099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01099-x

Keywords

Navigation