Skip to main content

Advertisement

Log in

An explosively driven launcher capable of \(10\,\mathrm{km\,s}^{-1}\) projectile velocities

  • Original article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Launching large (> 1 g) well-characterized projectiles to velocities beyond \({10}\,\mathrm{km\,s}^{-1}\) is of interest for a number of scientific fields, but is beyond the reach of current hypervelocity launcher technology. This paper reports the development of an explosively driven light-gas gun that has demonstrated the ability to launch 8-mm-diameter 0.36-g magnesium projectiles to \({10.4}\,\,\mathrm{km\,s}^{-1}\). The implosion-driven launcher (IDL) uses the linear implosion of a pressurized tube to shock-compress helium gas to a pressure of 5 GPa, which then expands to propel a projectile to hypervelocity. The launch cycle of the IDL is explored with the use of down-bore velocimetry experiments and a quasi-one-dimensional internal ballistics solver. A detailed overview of the design of the 8-mm launcher is presented, with an emphasis on the unique considerations which arise from the explosively driven propellant compression and the resulting extreme pressures and temperatures. The high average driving pressure results in a launcher that is compact, with a total length typically less than a meter. The possibility to scale the design to larger projectile sizes (25 mm diameter) is demonstrated. Finally, concepts for a modified launch cycle which may allow the IDL to reach significantly greater projectile velocities are explored conceptually and with preliminary experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data included in this paper are available upon reasonable request.

Notes

  1. Considerable development of the launcher reported in this study was performed with amine-sensitized liquid nitromethane as the explosive. Nitromethane was replaced with Primasheet to permit simpler evacuation of the entire chamber containing the launcher and for launcher use on field sites that did not permit liquid explosives.

References

  1. National Research Council: Limiting Future Collision Risk to Spacecraft: An Assessment of NASA’s Meteoroid and Orbital Debris Programs. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13244

  2. Ahrens, T.J.: Shock wave techniques for geophysics and planetary physics. Methods Exp. Phys. 24, 185–235 (1987). https://doi.org/10.1016/S0076-695X(08)60587-6

    Article  Google Scholar 

  3. Asimow, P.D.: 2.16—Dynamic compression. Schubert, G. (Ed.) Treatise on Geophysics, pp. 393–416. Elsevier, Oxford (2015). https://doi.org/10.1016/B978-0-444-53802-4.00050-6

  4. Duffy, T.S., Smith, R.F.: Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci. 7, 23 (2019). https://doi.org/10.3389/feart.2019.00023

    Article  Google Scholar 

  5. National Research Council: Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies. The National Academies Press, Washington, DC (2010). https://doi.org/10.17226/12842

  6. National Research Council: Orbital Debris: A Technical Assessment. The National Academies Press, Washington, DC (1995). https://doi.org/10.17226/4765

  7. Canning, T.N., Seiff, A., James, C.S.: Ballistic-range technology. Technical Report AGARDograph 138. Ames Research Center and DRDC Valcartier (1970). https://apps.dtic.mil/sti/citations/AD0713915

  8. Bogdanoff, D.W.: Optimization study of the Ames 0.5-in two-stage light gas gun. Int. J. Impact. Eng. 20(1), 131–142 (1997). https://doi.org/10.1016/S0734-743X(97)87487-8

    Article  Google Scholar 

  9. Bogdanoff, D.W.: CFD modeling of bore erosion in two-stage gas guns. Technical Report TM-112236. NASA Ames Research Center (1998). https://ntrs.nasa.gov/citations/19990007798

  10. Bogdanoff, D.W.: Design of a two-stage light gas gun for muzzle velocities of 10–11 km/s. 67th Meeting of the Aeroballistic Range Association, Toledo, Spain (2016). https://ntrs.nasa.gov/citations/20160011956

  11. Piekutowski, A.J., Poormon, K.L.: Development of a three-stage, light-gas gun at the University of Dayton Research Institute. Int. J. Impact Eng. 33(1), 615–624 (2006). https://doi.org/10.1016/j.ijimpeng.2006.09.018

    Article  Google Scholar 

  12. Friend, W.H., Murphy, C.L., Gough, P.S.: Review of meteoroid-bumper interaction studies at McGill University. Technical Report NASA CR-54858 (1969). https://ntrs.nasa.gov/citations/19700018280

  13. Chhabildas, L.C., Kmetyk, L.N., Reinhart, W.D., Hall, C.A.: Enhanced hypervelocity launcher—capabilities to 16 km/s. Int. J. Impact Eng. 17(1), 183–194 (1995). https://doi.org/10.1016/0734-743X(95)99845-I

    Article  Google Scholar 

  14. Glenn, L.A.: Design limitations on ultra-high velocity projectile launchers. Int. J. Impact Eng. 10(1), 185–196 (1990). https://doi.org/10.1016/0734-743X(90)90058-4

    Article  Google Scholar 

  15. Glenn, L.A.: Optimization studies of a three-stage light gas gun. AIP Conf. Proc. 429(1), 963–966 (1998). https://doi.org/10.1063/1.55684

    Article  MathSciNet  Google Scholar 

  16. Walker, J.D., Grosch, D.J., Mullin, S.A.: A hypervelocity fragment launcher based on an inhibited shaped charge. Int. J. Impact Eng. 14(1), 763–774 (1993). https://doi.org/10.1016/0734-743x(93)90070-n

    Article  Google Scholar 

  17. Ivanov, A.G., Korotchenko, M.V., Novitskii, E.Z., Ogorodnikov, V.A., Pevnitskii, B.V., Pinchuk, S.Y.: Accelerating plates to hypersonic velocities: Apparatus. J. Appl. Mech. Tech. Phys. 23(2), 238–241 (1982). https://doi.org/10.1007/bf00911005

    Article  Google Scholar 

  18. Bat’kov, Y.V., Kovalev, N.P., Kovtun, A.D., Kuropatkin, V.G., Lebedev, A.I., Makarov, Y.M., Manachkin, S.F., Novikov, S.A., Raevsky, V.A., Styazhkin, Y.M.: Explosive three-stage launcher to accelerate metal plates to velocities more than 10 km/s. Int. J. Impact Eng. 20(1), 89–92 (1997). https://doi.org/10.1016/s0734-743x(97)87482-9

    Article  Google Scholar 

  19. Glass, I.I.: Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes. Prog. Aerosp. Sci. 13, 223–291 (1972). https://doi.org/10.1016/0376-0421(72)90017-6

    Article  Google Scholar 

  20. Voitenko, A.E.: Production of high-velocity gas jets. Doklady Akademii Nauk SSSR Proc. USSR Acad. Sci. 158(6), 1278–1280 (1964)

    Google Scholar 

  21. Voitenko, A.E.: Acceleration of a gas compressed under conditions of acute-angle geometry. Zhurnal Prikladnoy Mekhaniki i Tekhnicheskoy Fiziki (J. Appl. Mech. Tech. Physics) 7(4), 112–116 (1966). https://doi.org/10.1007/BF00917666

  22. Voitenko, A.E.: Strong shock waves in air (device for generation of strong shock waves in air). Zhurnal Tekhniceskoy Fiziki J. Tech. Phys. 11(1), 128–130 (1966)

    Google Scholar 

  23. Sawle, D.R.: Characteristics of the Voitenko high-explosive-driven gas compressor. Astro Acta 14(5), 393–397 (1969)

    Google Scholar 

  24. Voitenko, A.E., Kirko, V.I.: Efficiency of a high-explosive plasma compressor. Fizika Goreniya i Vzryva (Combust. Explos. Shock Waves) 11(6), 956–958 (1975). https://doi.org/10.1007/BF00744785

  25. Tasker, D.G., Bae, Y.K., Johnson, C., Rainey, K., Campbell, C., Oschwald, D., Reed, C.: Voitenko experiments with novel diagnostics detect velocities of 89 km/s. Int. J. Impact Eng. 135, 103–406 (2020). https://doi.org/10.1016/j.ijimpeng.2019.103406

    Article  Google Scholar 

  26. Merzhievskii, L.A., Titov, V.M., Fadeenko, Y.I., Shvetsov, G.A.: High-speed launching of solid bodies. Fizika Goreniya i Vzryva (Combust. Explos. Shock Waves) 23(5), 576–589 (1987). https://doi.org/10.1007/bf00756539

    Article  Google Scholar 

  27. Titov, V.M., Fadayenko, Y.I., Titova, N.S.: Acceleration of solid particles by cumulative explosion. Doklady Akademii Nauk SSSR Proc. USSR Acad. Sci. 180(5), 1051–1052 (1968)

    Google Scholar 

  28. Rusakov, M.M.: Experimental simulation of meteorite impact. Zhurnal Prikladnoy Mekhaniki i Tekhnicheskoy Fiziki (J. Appl. Mech. Tech. Phys.) 7(4), 123–124 (1966). https://doi.org/10.1007/BF00917682

    Article  Google Scholar 

  29. Rusakov, M.M., Lebedev, M.A.: Determination of recoil momentum owing to meteoritic impact in a simulation. Kosmicheskie Issledovaniya 6(4), 634 (1968)

    Google Scholar 

  30. Zumennov, A.S., Titova, N.S., Fadayenko, Y.I., Christyakov, V.P.: Detonation of elongated charges with cavities. Zhurnal Prikladnoy Mekhaniki i Tekhnicheskoy Fiziki (J. Appl. Mech. Tech. Phys.) 10(2), 79–83 (1969). https://doi.org/10.1007/BF00913111

  31. Fadeenko, Y.I., Lobanov, V.F., Silvestrov, V.V., Titov, V.M.: High speed gas flows in explosions of cavitated explosives. Acta Astronaut. 1(9), 1171–1179 (1974). https://doi.org/10.1016/0094-5765(74)90044-7

    Article  Google Scholar 

  32. Belov, G.V., Dyakin, E.P., Demidov, A.A., Zimalin, V.S., Meltsas, V.Y., Polevoi, O.N., Smirnov, G.S., Chikin, Y.N., Chizhov, V.I., Shustova, N.I., Yamolkin, E.L.: Gas-cumulative launching device for acceleration of steel and titanium spherical elements of mass 0.2–2.1 g to velocity 3–7.5 km/s. Int. J. Impact Eng. 29(1), 105–116 (2003). https://doi.org/10.1016/j.ijimpeng.2003.09.012

  33. Crosby, J.K., Gill, S.P.: Feasibility study of an explosive gun. Technical Report NASA CR-709. Stanford Research Institute (1967). https://ntrs.nasa.gov/citations/19670012821

  34. Moore, E.T., Jr.: Explosive hypervelocity launchers. Technical Report NASA CR-982. Physics International Company (1968). https://ntrs.nasa.gov/citations/19680006308

  35. Watson, J.D.: High-velocity explosively driven guns. Technical Report NASA CR-1533. Physics International Company (1970). https://ntrs.nasa.gov/citations/19700018784

  36. Watson, J.D.: A summary of the development of large explosive guns for reentry simulation. Technical Report PIFR-155. Physics International Company (1970). https://apps.dtic.mil/sti/citations/AD0712394

  37. Baum, D.W.: Development of explosively driven launcher for meteoroid studies. Technical Report NASA CR-2143. Physics International Company (1973). https://ntrs.nasa.gov/citations/19730006545

  38. Baum, D.W.: Explosively driven hypervelocity launcher second-stage augmentation techniques. Technical Report PIFR-245-1. Physics International Company (1973). https://ntrs.nasa.gov/citations/19730012525

  39. Seifert, K.: Feasibility study of explosively driven hypervelocity projectiles. Technical Report PIFR-559. Physics International Company/AMERDC (1974). https://apps.dtic.mil/sti/citations/AD0785578

  40. Krier, H., Adams, M.J.: An introduction to gun interior ballistics and a simplified ballistic code. In: Krier, H., Summerfield, M. (Eds.) Interior Ballistics of Guns, pp. 1–36. AIAA, New York, NY (1979)

  41. Carlucci, D.E., Jacobson, S.S.: Analytic and computational ballistics. In: Theory and Design of Guns and Ammunition, pp. 63–96. CRC Press, Boca Raton (2017). https://doi.org/10.1201/9781420066197

  42. Thompson, P.A.: One-dimensional unsteady flow. In: Shames, I.H. (ed.) Compressible-Fluid Dynamics, pp. 375–442. McGraw-Hill, New York (1988)

    Google Scholar 

  43. Szirti, D., Loiseau, J., Higgins, A., Tanguay, V.: Dynamics of explosively imploded pressurized tubes. J. Appl. Phys. 109(8), 084526 (2011). https://doi.org/10.1063/1.3567919

    Article  Google Scholar 

  44. Walsh, J.M., Shreffler, R.G., Willig, F.J.: Limiting conditions for jet formation in high velocity collisions. J. Appl. Phys. 24(3), 349–359 (1953). https://doi.org/10.1063/1.1721278

    Article  Google Scholar 

  45. Antoun, T., Curran, D.R., Seaman, L., Kanel, G.I., Razorenov, S.V., Utkin, A.V.: Spall Fracture. Springer, New York (2003). https://doi.org/10.1007/b97226

  46. Hildebrand, M., Huneault, J., Loiseau, J., Higgins, A.J.: Measurement of tube wall ablation in hypervelocity flows. 52nd Aerospace Sciences Meeting, National Harbor, MD, AIAA Paper 2014-1389 (2014). https://doi.org/10.2514/6.2014-1389

  47. Strand, O.T., Goosman, D.R., Martinez, C., Whitworth, T.L., Kuhlow, W.W.: Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77(8), 083108 (2006). https://doi.org/10.1063/1.2336749

    Article  Google Scholar 

  48. Dolan, D.H.: Extreme measurements with photonic doppler velocimetry (PDV). Rev. Sci. Instrum. 91(5), 051501 (2020). https://doi.org/10.1063/5.0004363

    Article  Google Scholar 

  49. Georges, W., Loiseau, J., Higgins, A., Zimmermann, J.: Effect of scale, material strength, and loading on ejecta formation from explosively driven aluminum. J. Dyn. Behav. Mater. 3(4), 485–496 (2017). https://doi.org/10.1007/s40870-017-0127-1

    Article  Google Scholar 

  50. Hildebrand, M., Huneault, J., Loiseau, J., Higgins, A.J.: Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher. AIP Conf. Proc. 1793(1), 160009 (2017). https://doi.org/10.1063/1.4971749

    Article  Google Scholar 

  51. Hildebrand, M.: Concepts for increasing the projectile velocity of an implosion driven launcher. MA Thesis. McGill University (2017). https://escholarship.mcgill.ca/concern/theses/n009w498k

  52. Huneault, J.: Development of an implosion-driven hypervelocity launcher for orbital debris impact simulation. MA Thesis. McGill University (2013). https://escholarship.mcgill.ca/concern/theses/bg257j206

  53. Huneault, J., Loiseau, J., Higgins, A., Farinaccio, R.: Coupled Lagrangian gasdynamic and structural hydrocode solvers for simulating an implosion-driven hypervelocity launcher. 51st Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2013-0274 (2013). https://doi.org/10.2514/6.2013-274

  54. VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950). https://doi.org/10.1063/1.1699639

    Article  MathSciNet  MATH  Google Scholar 

  55. Loiseau, J., Huneault, J., Higgins, A.J.: Development of a linear implosion-driven hypervelocity launcher. Procedia Eng. 58, 77–87 (2013). https://doi.org/10.1016/j.proeng.2013.05.011

    Article  Google Scholar 

  56. Loiseau, J., Georges, W., Higgins, A.J.: Validation of the Gurney model in planar geometry for a conventional explosive. Propellants Explos. Pyrotech. 41, 655–664 (2016). https://doi.org/10.1002/prep.201500246

    Article  Google Scholar 

  57. Petel, O.E., Mack, D., Higgins, A.J., Turcotte, R., Chan, S.K.: Minimum propagation diameter and thickness of high explosives. J. Loss Prev. Process. Ind. 20(4), 578–583 (2007). https://doi.org/10.1016/j.jlp.2007.05.007

    Article  Google Scholar 

  58. Seigel, A.E.: The theory of high speed guns. Technical Report AGARDograph 91. US Naval Ordnance Laboratory, White Oak (1965). https://apps.dtic.mil/sti/citations/AD0475660

  59. Russell, D.A.: Shock-wave strengthening by area convergence. J. Fluid Mech. 27(2), 305–314 (1967). https://doi.org/10.1017/S0022112067000333

    Article  Google Scholar 

  60. Wang, M., Huneault, J., Higgins, A.J., Liu, S.: Timing delay analysis of the auxiliary pump technique to improve the performance of an implosion-driven hypervelocity launcher. Proceedings of the 15th Hypervelocity Impact Symposium. Destin, FL (2019). https://doi.org/10.1115/HVIS2019-117

  61. Wang, M., Higgins, A.J., Jiao, D., Huang, J., Liu, S.: Preliminary simulation and experimental study on implosion-driven hyper-velocity launching technology. Gaoya Wuli Xuebao Chin. J. High Press. Phys. (2020). https://doi.org/10.11858/gywlxb.20190870

    Article  Google Scholar 

  62. Wang, M., Zhou, Z., Huang, J., Luo, Q., Long, Y., Jiao, D., Liu, S.: Experiment on crater characteristics of aluminium targets impacted by magnesium projectiles at velocities of about 10 km/s. Baozha Yu Chongji Explos. Shock Waves (2021). https://doi.org/10.11883/bzycj-2020-0129

    Article  Google Scholar 

  63. Huneault, J., Loiseau, J., Hildebrand, M., Higgins, A.: Down-bore velocimetry of an explosively driven light-gas gun. Procedia Eng. 103, 230–236 (2015). https://doi.org/10.1016/j.proeng.2015.04.031

    Article  Google Scholar 

  64. Cooper, P.W.: Explosives Engineering. Wiley, New York (1996)

    Google Scholar 

  65. Loiseau, J., Huneault, J., Higgins, A.J.: Development of an explosively driven two-stage light gas gun for high velocity impact studies. Proceedings of the 27th International Symposium on Ballistics, pp. 382–393 (2013)

  66. Charters, A.C.: Development of the high-velocity gas-dynamics gun. Int. J. Impact Eng. 5(1), 181–203 (1987). https://doi.org/10.1016/0734-743X(87)90038-8

  67. Huneault, J., Loiseau, J., Higgins, A.J.: Development of an accelerating piston implosion-driven launcher. J. Phys. Conf. Ser. 500(14), 142019 (2014). https://doi.org/10.1088/1742-6596/500/14/142019

    Article  Google Scholar 

  68. Loiseau, J.: Phase velocity techniques for the implosion of pressurized linear drivers. MA Thesis. McGill University (2010). https://escholarship.mcgill.ca/concern/theses/9g54xj08h

  69. Loiseau, J., Szirti, D., Higgins, A.J., Tanguay, V.: Experimental technique for generating fast high-density shock waves with phased linear explosive shock tubes. Shock Waves 22(1), 85–88 (2012). https://doi.org/10.1007/s00193-011-0333-z

  70. Loiseau, J., Huneault, J., Petel, O.E., Goroshin, S., Frost, D.L., Higgins, A.J., Zhang, F.: Development of multi-component explosive lenses for arbitrary phase velocity generation. J. Phys. Conf. Ser. 500(19), 192010 (2014). https://doi.org/10.1088/1742-6596/500/19/192010

    Article  Google Scholar 

  71. Bogdanoff, D.W., Miller, R.J.: New higher-order Godunov code for modelling performance of two-stage light gas guns. Technical Report TM-110363. NASA Ames Research Center (1995). https://ntrs.nasa.gov/citations/19960008802

  72. Lyon, S.P., Johnson, J. D.: SESAME: the Los Alamos National Laboratory equation of state database. Technical Report LA-UR-92-3407. Los Alamos National Laboratory (1992)

Download references

Acknowledgements

The authors would like to thank Vincent Tanguay, Daniel Szirti, Matthew Serge, and Patrick Bachelor for their help in conducting experiments and useful input during the early development of the launcher. This work was supported by the Canadian Space Agency (CSA) [Contracts Nos. 9F028-064201/A and 64/7012003]; Defense Research and Development Canada (DRDC) [Contract No. W7701-82047]; the Fonds de Recherche du Quebec Nature et Technologies (FRQNT) [Grant 2012-PR-148696]; and the Natural Sciences and Engineering Research Council of Canada (NSERC) [Grant 2014-06258].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Huneault or J. Loiseau.

Additional information

Communicated by C. Goyne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (avi 21975 KB)

Supplementary file 2 (pdf 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huneault, J., Loiseau, J., Hildebrand, M.T. et al. An explosively driven launcher capable of \(10\,\mathrm{km\,s}^{-1}\) projectile velocities. Shock Waves 32, 569–591 (2022). https://doi.org/10.1007/s00193-022-01095-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01095-1

Keywords

Navigation