Skip to main content
Log in

Comparative study on the onset of detonation in methane–oxygen mixtures: initiation in a smooth tube and re-initiation downstreamof a single orifice plate

  • Original article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

An experimental comparative study of the detonation re-initiation downstream of an orifice plate and the typical deflagration-to-detonation transition in a smooth tube is carried out. In this study, two tube configurations are employed to study the onset of detonation in stoichiometric methane–oxygen mixtures, i.e., a smooth tube and a tube with a single orifice plate placed in the entrance of the self-sustained detonation transmission. Combustion wave velocity measurement and soot-foil visualization are used to characterize the initiation of detonation. The dimensionless parameters correlated with cell size, tube diameter, and orifice diameter are introduced to analyze the detonation initiation process. The results indicate that the dependence of the detonation initiation distance on the initial pressure as a whole is close to inverse proportionality, and the fitting degree is higher for the detonation re-initiation downstream of the orifice plate. The effect of inherent instability of CH\(_{4}\)–2O\(_{2}\) on the onset of detonation is significantly enhanced when the cell size is smaller than the characteristic dimension of an unobstructed tube, either for deflagration-to-detonation transition in a smooth tube or for the detonation re-initiation downstream of an orifice plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Poludnenko, A.Y., Jessica, C., Kareem, A., Gamezo, V.N., Taylor, B.D.: A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae. Science 366, eaau7365 (2019). https://doi.org/10.1126/science.aau7365

    Article  Google Scholar 

  2. Ciccarelli, G., Boccio, J.L., Ginsberg, T., Tagawa, H.: The influence of initial temperature on flame acceleration and deflagration-to-detonation transition. Symp. (Int.) Combust. 26(2), 2973–2979 (1996). https://doi.org/10.1016/S0082-0784(96)80140-8

    Article  Google Scholar 

  3. Gdr, A., Smf, B., Aab, B., Dwn, C.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30(6), 545–672 (2004). https://doi.org/10.1016/j.pecs.2004.05.001

    Article  Google Scholar 

  4. Kolbe, M., Simoes, V., Salzano, E.: Including detonations in industrial safety and risk assessments. J. Loss Prevent. Proc. 49, 171–176 (2017). https://doi.org/10.1016/j.jlp.2017.06.015

    Article  Google Scholar 

  5. Lee, J.H.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008). (www.cambridge.org/9780521897235)

    Book  Google Scholar 

  6. Urtiew, P.A., Oppenheim, A.K.: Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. A Math. Phys. 295(1440), 13–28 (1966). https://doi.org/10.1098/rspa.1966.0223

    Article  Google Scholar 

  7. Zel’Dovich, Y.B., Librovich, V.B., Makhviladze, G.M., Sivashinskil, G.I.: On the onset of detonation in a nonuniformly heated gas. J. Appl. Mech. Tech. Phys. 11(2), 264–270 (1970). https://doi.org/10.1007/BF00908106

    Article  Google Scholar 

  8. Lee, J.H., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronaut. 5(11–12), 971–982 (1978). https://doi.org/10.1016/0094-5765(78)90003-6

    Article  Google Scholar 

  9. Bartenev, A.M., Gelfand, B.E.: Spontaneous initiation of detonations. Prog. Energy Combust. Sci. 26(1), 29–55 (2000). https://doi.org/10.1016/S0360-1285(99)00007-6

    Article  Google Scholar 

  10. Sharpe, G.J., Short, M.: Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model. J. Fluid Mech. 476, 267–292 (2003). https://doi.org/10.1017/S0022112002002963

    Article  MathSciNet  MATH  Google Scholar 

  11. Smirnov, N.N., Tyurnikov, M.V.: Experimental investigation of deflagration to detonation transition in hydrocarbon-air gaseous mixtures. Combust. Flame 100(4), 661–668 (1995). https://doi.org/10.1016/0010-2180(94)00151-H

    Article  Google Scholar 

  12. Liberman, M.A., Ivanov, M.F., Kiverin, A.D., Kuznetsov, M.S., Chukalovsky, A.A., Rakhimova, T.V.: Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut. 67(7–8), 688–701 (2010). https://doi.org/10.1016/j.actaastro.2010.05.024

    Article  Google Scholar 

  13. Khokhlov, A.M., Oran, E.S., Thomas, G.O.: Numerical simulation of deflagration-to-detonation transition: the role of shock-flame interactions in turbulent flames. Combust. Flame 117(1–2), 323–339 (1999). https://doi.org/10.1016/S0010-2180(98)00076-5

    Article  Google Scholar 

  14. Eder, A., Brehm, N.: Analytical and experimental insights into fast deflagrations, detonations, and the deflagration-to-detonation transition process. Heat Mass Transf. 37(6), 543–548 (2001). https://doi.org/10.1007/s002310100238

    Article  Google Scholar 

  15. Zhu, Y.J., Chao, J., Lee, J.: An experimental investigation of the propagation mechanism of critical deflagration waves that lead to the onset of detonation. Proc. Combust. Inst. 31(2), 2455–2462 (2007). https://doi.org/10.1016/j.proci.2006.07.209

    Article  Google Scholar 

  16. Knystautas, R., Lee, J.H., Moen, I., Wagner, H.G.: Direct initiation of spherical detonation by a hot turbulent gas jet. Symp. (Int.) Combust. 17(1), 1235–1245 (1979). https://doi.org/10.1016/S0082-0784(79)80117-4

    Article  Google Scholar 

  17. Achasov, O.V., Penyaz’kov, O.G.: Initiation of detonation by burning jets. J. Eng. Phys. Thermophys. 69(1), 23–27 (1996). https://doi.org/10.1007/BF02606217

    Article  Google Scholar 

  18. Chao, J., Otsuka, T., Lee, J.H.S.: An experimental investigation of the onset of detonation. Proc. Combust. Inst. 30(2), 1889–1897 (2005). https://doi.org/10.1016/j.proci.2004.08.193

    Article  Google Scholar 

  19. Grondin, J.S., Lee, J.H.S.: Experimental observation of the onset of detonation downstream of a perforated plate. Shock Waves 20(5), 381–386 (2010). https://doi.org/10.1007/s00193-010-0267-x

    Article  Google Scholar 

  20. Qin, H., Lee, J.H.S., Wang, Z., Zhuang, F.: An experimental study on the onset processes of detonation waves downstream of a perforated plate. Proc. Combust. Inst. 35(2), 1973–1979 (2015). https://doi.org/10.1016/j.proci.2014.07.056

    Article  Google Scholar 

  21. Lin, W., Zhou, J., Lin, Z., Liu, S.: An experimental study on the onset of detonation downstream of a perforated plate with staggered orifices. Exp. Fluids 58, 121 (2017). https://doi.org/10.1007/s00348-017-2401-3

    Article  Google Scholar 

  22. Liu, Y.K., Lee, J.H., Knystautas, R.: Effect of geometry on the transmission of detonation through an orifice. Combust. Flame 56(2), 215–225 (1984). https://doi.org/10.1016/0010-2180(84)90038-5

    Article  Google Scholar 

  23. Ciccarelli, G., Boccio, J.L.: Detonation wave propagation through a single orifice plate in a circular tube. Symp. (Int.) Combust. 27(2), 2233–2239 (1998). https://doi.org/10.1016/S0082-0784(98)80072-6

    Article  Google Scholar 

  24. Zhang, B., Liu, H., Yan, B.: Velocity behavior downstream of perforated plates with large blockage ratio for unstable and stable detonations. Aerosp. Sci. Technol. 86, 236–243 (2019). https://doi.org/10.1016/j.ast.2019.01.010

    Article  Google Scholar 

  25. Zhang, B., Liu, H.: The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture. Combust. Flame 182, 279–287 (2017). https://doi.org/10.1016/j.combustflame.2017.04.025

    Article  Google Scholar 

  26. Sun, X., Li, Q., Xu, M.J., Wang, L.Q., Guo, J., Lu, S.X.: Experimental study on the detonation propagation behaviors through a small-bore orifice plate in hydrogen–air mixtures. Int. J. Hydrog. Energy 44(29), 15523–15535 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.134

    Article  Google Scholar 

  27. Bollinger, L., Loren, E.: Experimental measurements and theoretical analysis of detonation induction distances. ARS J. 31(5), 588–595 (1961). https://doi.org/10.2514/8.5567

  28. Kuznetsov, M., Alekseev, V., Matsukov, I., Dorofeev, S.: DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves 14(3), 205–215 (2005). https://doi.org/10.1007/s00193-005-0265-6

    Article  Google Scholar 

  29. Guan, Q.W., Ji, W.T., Yan, X.Q., Yu, J.L., Yao, F.T., Zhang, D.: Effect of fully blocked non-rigid boundary conditions on detonation wave. Process Saf. Environ. 116, 52–60 (2018). https://doi.org/10.1016/j.psep.2018.01.007

  30. Oran, E., Chamberlai, G., Pekalski, A.: Mechanisms and occurrence of detonations in vapor cloud explosions. Prog. Energy Combust. Sci. 77, 100804 (2020). https://doi.org/10.1016/j.pecs.2019.100804

    Article  Google Scholar 

  31. Wu, Y.W., Zheng, Q., Weng, C.S.: An experimental study on the detonation transmission behaviours in acetylene–oxygen–argon mixtures. Energy 143, 554–561 (2018). https://doi.org/10.1016/j.energy.2017.11.019

    Article  Google Scholar 

  32. Goodwin, G.B., Houim, R.W., Oran, E.S.: Shock transition to detonation in channels with obstacles. Proc. Combust. Inst. 36(2), 2717–2724 (2017). https://doi.org/10.1016/j.proci.2016.06.160

    Article  Google Scholar 

  33. Zhang, B., Shen, X.B., Pang, L., Gao, Y.: Methane–oxygen detonation characteristics near their propagation limits in ducts. Fuel 177, 1–7 (2016). https://doi.org/10.1016/j.fuel.2016.02.089

    Article  Google Scholar 

  34. Kaneshige, M., Shepherd, J.E.: Detonation Database: GALCIT Report FM97-8. California Institute of Technology, Pasadena (1997). https://doi.org/10.7907/g3gs-4y69

    Book  Google Scholar 

  35. Lee, J.H.S., Jesuthasan, A., Ng, H.D.: Near limit behavior of the detonation velocity. Proc. Combust. Inst. 34(2), 1957–1963 (2013). https://doi.org/10.1016/j.proci.2012.05.036

    Article  Google Scholar 

  36. Starr, A., Lee, J.H.S., Ng, H.D.: Detonation limits in rough walled tubes. Proc. Combust. Inst. 35(2), 1989–1996 (2015). https://doi.org/10.1016/j.proci.2014.06.130

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by National Natural Science Foundation of China (52174167), Advanced Petrochemical Equipment and Safety System Innovation Team of Dalian University of Technology (DUT2020TB03), National Natural Science Foundation of China (52104187) and China Postdoctoral Science Foundation (No. 2022M710585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yu.

Additional information

Communicated by L. Bauwens.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Yan, X., Wang, X. et al. Comparative study on the onset of detonation in methane–oxygen mixtures: initiation in a smooth tube and re-initiation downstreamof a single orifice plate. Shock Waves 32, 539–551 (2022). https://doi.org/10.1007/s00193-022-01087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01087-1

Keywords

Navigation