Skip to main content

Advertisement

Log in

Numerical study of direct initiation for one-dimensional Chapman–Jouguet detonations by reactive Riemann problems

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Direct initiation of one-dimensional Chapman–Jouguet detonations in a framework of reactive Riemann problems has been numerically studied with a detailed chemical reaction mechanism in a stoichiometric hydrogen/oxygen mixture diluted by 70% argon. The reactive Riemann problem, with reactants of high temperature and high pressure to the left of the diaphragm as an energy source with a finite length scale, is applied to initiate detonations downstream. Based on the length scales and initial thermodynamic parameters of the energy source, three different regimes of detonation initiation were found, namely supercritical, critical, and subcritical regimes, which is in accord with the classical blast initiation. The initiation process is essentially an inert shock tube problem nonlinearly coupled with a constant-volume explosion. When the auto-ignition delay time of the constant-volume explosion is large as compared to that behind the leading shock, the mechanism can be identified as an incident shock initiation because the explosion far behind the leading shock cannot affect it. This is essentially the same as the experiments of detonation initiation in a shock tube. Conversely, when the auto-ignition delay time of the constant-volume explosion is small as compared to that behind the leading shock, the initiation process is highly influenced by the heat release of chemical reaction occurring near the rear boundary. A pressure pulse is generated at the tail of the modified expansion fan because of localized maximum reaction rate and eventually evolves into a shock to interact with the leading shock to enhance it. The subsequent detonation downstream is also a result of the initiation of the enhanced leading shock. The numerical results also suggest that the critical energy scaled by the product of the initial pressure and the length scale of the energy source keeps constant with the change in length scale, but can be highly influenced by the initial temperature of the energy source. The scaled critical energy is found to be approximately between 1 and 2 for a wide temperature range above the auto-ignition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Lee, J.H.S., Moen, I.O.: The mechans of transition from deflagration to detonation in vapor cloud explosions. Prog. Energy Combust. Sci. 6, 359–389 (1980). https://doi.org/10.1016/0360-1285(80)90011-8

    Article  Google Scholar 

  2. Chambers, J., Ahmed, K.: Turbulent flame augmentation using a fluidic jet for deflagration-to-detonation. Fuel 199, 616–626 (2017). https://doi.org/10.1016/j.fuel.2017.03.023

    Article  Google Scholar 

  3. Wang, C., Dong, X., Cao, J., Ning, J.: Experimental investigation of flame acceleration and deflagration-to-detonation transition characteristics using coal gas and air mixture. Combust. Sci. Technol. 187, 1805–1820 (2015). https://doi.org/10.1080/00102202.2015.1059332

    Article  Google Scholar 

  4. Wang, C., Zhao, Y., Zhang, B.: Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels. J. Loss Prev. Process Ind. 43, 120–126 (2016). https://doi.org/10.1016/j.jlp.2016.05.008

    Article  Google Scholar 

  5. Shepherd, J.E., Lee, J.H.S.: On the transition from deflagration to detonation. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds.) Major Research Topics in Combustion, pp. 439–487. Springer, Berlin (1992). https://doi.org/10.1007/978-1-4612-2884-4_22

    Chapter  Google Scholar 

  6. Sichel, M.: Transition to detonation: role of explosion within an explosion. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds.) Major Research Topics in Combustion, pp. 491–524. Springer, Berlin (1992). https://doi.org/10.1007/978-1-4612-2884-4_24

    Chapter  Google Scholar 

  7. Zhang, B., Kamenskihs, V., Ng, H.D., Lee, J.H.S.: Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures. Proc. Combust. Inst. 33, 2265–2271 (2011). https://doi.org/10.1016/j.proci.2010.06.165

    Article  Google Scholar 

  8. Qi, C., Chen Z.: Numerical simulation of direct detonation initiation in H\(_2\)/O\(_2\)/Ar mixtures with detailed chemistry. 25th ICDERS, Leeds, UK (2015)

  9. Zhang, B., Ng, H.D., Lee, J.H.S.: The critical tube diameter and critical energy for direct initiation of detonation in C\(_2\)H\(_2\)/N\(_2\)O/Ar mixtures. Combust. Flame 159, 2944–2953 (2012). https://doi.org/10.1016/j.combustflame.2012.06.010

    Article  Google Scholar 

  10. Zhang, B., Mehrjoo, N., Ng, H.D., Lee, J.H.S., Bai, C.: On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution. Combust. Flame 161, 1390–1397 (2014). https://doi.org/10.1016/j.combustflame.2013.11.016

    Article  Google Scholar 

  11. Zhang, B., Liu, H., Yan, B.: Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture. Fuel 236, 975–983 (2019). https://doi.org/10.1016/j.fuel.2018.09.083

    Article  Google Scholar 

  12. Zhang, B., Liu, H., Yan, B.: Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales. Fuel 239, 617–622 (2019). https://doi.org/10.1016/j.fuel.2018.11.062

    Article  Google Scholar 

  13. Zeldovich, Y.B., Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation of gases. Sov. Phys. Tech. Phys. 1, 1689–1713 (1956)

    Google Scholar 

  14. Lee, J.H.S., Higgins, A.J.: Comments on criteria for direct initiation of detonation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357, 3503–3521 (1999). https://doi.org/10.1098/rsta.1999.0506

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  16. Lee, J.H.S.: Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech. 16, 311–336 (1984). https://doi.org/10.1146/annurev.fl.16.010184.001523

    Article  Google Scholar 

  17. Vasil’ev, A.A.: Dynamic parameters of detonation. In: Zhang, F. (ed.) Shock Waves Science and Technology Library. Detonation Dynamics, vol. 6, pp. 213–279. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-22967-1_4

  18. He, L., Clavin, P.: On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech. 277, 227–248 (1994). https://doi.org/10.1017/S0022112094002740

    Article  MathSciNet  MATH  Google Scholar 

  19. Eckett, C.A., Quirk, J.J., Shepherd, J.E.: The role of unsteadiness in direct initiation of gaseous detonations. J. Fluid Mech. 421, 147–183 (2000). https://doi.org/10.1017/s0022112000001555

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazaheri, K.: Mechanism of the onset of detonation in blast initiation. Ph.D. thesis, McGill University (1997)

  21. Ng, H.D., Lee, J.H.S.: Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech. 476, 179–211 (2003). https://doi.org/10.1017/S0022112002002872

    Article  MathSciNet  MATH  Google Scholar 

  22. Im, K., Yu, S.T.: Analyses of direct detonation initiation with realistic finite-rate chemistry. 41st AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV (2003). https://doi.org/10.2514/6.2003-1318

  23. Wang, B., Yu, S.T.: Direct calculation of spherical detonation initiation of a H\(_2\)/O\(_2\)/Ar mixture by the CESE method. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2004). https://doi.org/10.2514/6.2004-793

  24. Qi, C., Chen, Z.: Effects of temperature perturbation on direct detonation initiation. Proc. Combust. Inst. 36, 2743–2751 (2017). https://doi.org/10.1016/j.proci.2016.06.093

    Article  Google Scholar 

  25. Berets, D.J., Greene, E.F., Kistiakowsky, G.B.: Gaseous detonations. II. Initiation by shock \({\rm Waves}^{1}\). J. Am. Chem. Soc. 72, 1086–1091 (1950). https://doi.org/10.1021/ja01159a009

    Article  Google Scholar 

  26. Strehlow, R.A., Cohen, A.: Initiation of detonation. Phys. Fluids 5, 97 (1962). https://doi.org/10.1063/1.1706497

    Article  Google Scholar 

  27. Dyner, H.B., Strehlow, R.A.: One-dimensional detonation initiation. AIAA J. 1, 591–595 (1963). https://doi.org/10.2514/3.1600

    Article  Google Scholar 

  28. Gilbert, R.B., Strehlow, R.A.: Theory of detonation initiation behind reflected shock waves. AIAA J. 4, 1777–1783 (1966). https://doi.org/10.2514/3.3777

    Article  Google Scholar 

  29. Oran, E.S., Young, T.R., Boris, J.P., Cohen, A.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48, 135–148 (1982). https://doi.org/10.1016/0010-2180(82)90123-7

    Article  Google Scholar 

  30. Oran, E.S., Boris, J.P.: Weak and strong ignition. II. Sensitivity of the hydrogen oxygen system. Combust. Flame 48, 149–161 (1982). https://doi.org/10.1016/0010-2180(82)90124-9

    Article  Google Scholar 

  31. Smirnov, N.N., Panfilov, I.I.: Deflagration to detonation transition in combustible gas mixtures. Combust. Flame 101, 91–100 (1995). https://doi.org/10.1016/0010-2180(94)00190-4

    Article  Google Scholar 

  32. Smirnov, N.N., Panfilov, I.I., Tyurnikov, M.V., Berdyuguin, A.G., Dushin, V.R., Presnyakov, Yu.P.: Theoretical and experimental investigation of combustion to detonation transition in chemically active gas mixtures in closed vessels. J. Hazard. Mater. 53, 195–211 (1997). https://doi.org/10.1016/S0304-3894(96)01801-8

    Article  Google Scholar 

  33. Short, M., Dold, J.W.: Unsteady gasdynamic evolution of an induction domain between a contact surface and a shock wave. I: thermal runaway. SIAM J. Appl. Math. 56, 1295–1316 (1996). https://doi.org/10.1137/S0036139994276306

    Article  MathSciNet  MATH  Google Scholar 

  34. Parkins, C.J.: Shock-generated ignition. Newtonian asymptotics for the induction domain between a contact surface and shock. SIAM J. Appl. Math. 61, 701–729 (2000). https://doi.org/10.1137/s0036139997331562

    Article  MathSciNet  MATH  Google Scholar 

  35. Sharpe, G.J., Short, M.: Ignition of thermally sensitive explosives between a contact surface and a shock. Phys. Fluids 19, 126102 (2007). https://doi.org/10.1063/1.2821909

    Article  MATH  Google Scholar 

  36. Melguizo-Gavilanes, J., Rezaeyan, N., Lopez-Aoyagi, M., Bauwens, L.: Simulation of shock-initiated ignition. Shock Waves 20, 467–478 (2010). https://doi.org/10.1007/s00193-010-0255-1

    Article  MATH  Google Scholar 

  37. Melguizo-Gavilanes, J., Bauwens, L.: Shock initiated ignition for hydrogen mixtures of different concentrations. Int. J. Hydrog. Energy 38, 8061–8067 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.018

    Article  Google Scholar 

  38. Mooradian, A.J., Gordon, W.E.: Gaseous detonation. I. Initiation of detonation. J. Chem. Phys. 19, 1166–1172 (1951). https://doi.org/10.1063/1.1748497

    Article  Google Scholar 

  39. Gordon, W.E., Mooradian, A.J., Harper, S.A.: Limit and spin effects in hydrogen–oxygen detonations. Symposium (International) on Combustion, vol. 7, pp. 752–759 (1958). https://doi.org/10.1016/S0082-0784(58)80116-2

  40. Clarke, J.F., Kassoy, D.R., Riley, N.: On the Direct Initiation of a Plane Detonation Wave. Proc. R. Soc. Lond. A 408, 129–148 (1986). https://doi.org/10.1098/rspa.1986.0113

    Article  MATH  Google Scholar 

  41. Sileem, A., Kassoy, D.R., Hayashi, A.K.: Thermally initiated detonation through deflagration to detonation transition. Proc. R. Soc. Lond. A 435, 459–482 (1991). https://doi.org/10.1098/rspa.1991.0156

    Article  Google Scholar 

  42. Kassoy, D.R., Kuehn, J.A., Nabity, M.W., Clarke, J.F.: Detonation initiation on the microsecond time scale: DDTs. Combust. Theory Model. 12, 1009–1047 (2008). https://doi.org/10.1080/13647830802045080

    Article  MATH  Google Scholar 

  43. Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39, 211–214 (1980). https://doi.org/10.1016/0010-2180(80)90017-6

    Article  Google Scholar 

  44. Kapila, A.K., Schwendeman, D.W., Quirk, J.J., Hawa, T.: Mechanisms of detonation formation due to a temperature gradient. Combust. Theor. Model. 6, 553–594 (2002). https://doi.org/10.1088/1364-7830/6/4/302

    Article  MathSciNet  MATH  Google Scholar 

  45. Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133, 63–74 (2003). https://doi.org/10.1016/S0010-2180(02)00541-2

    Article  Google Scholar 

  46. Liberman, M., Kiverin, A., Ivanov, M.: On detonation initiation by a temperature gradient for a detailed chemical reaction models. Phys. Lett. A 375, 1803–1808 (2011). https://doi.org/10.1016/j.physleta.2011.03.026

    Article  Google Scholar 

  47. Liberman, M.A., Kiverin, A.D., Ivanov, M.F.: Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models. Phys. Rev. E 85, 056312 (2012). https://doi.org/10.1103/PhysRevE.85.056312

    Article  Google Scholar 

  48. Ihme, M., Sun, Y., Deiterding, R.: detailed simulations of shock-bifurcation and ignition of an argon-diluted hydrogen/oxygen mixture in a shock Tube. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX (2013). https://doi.org/10.2514/6.2013-538

  49. Ihme, M., Sun, Y., Deiterding, R.: Detailed simulations of weak-to-strong ignition of a \(\text{H}_{{2}}\)/\(\text{ O}_{{2}}\)/Ar mixture in shock-tubes. In: Bonazza, R., Ranjan, D. (eds.) 29th International Symposium on Shock Waves 1, pp. 209–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16835-7_31

  50. Gray, J.A.T., Lemke, M., Reiss, J., Paschereit, C.O., Sesterhenn, J., Moeck, J.P.: A compact shock-focusing geometry for detonation initiation: experiments and adjoint-based variational data assimilation. Combust. Flame 183, 144–156 (2017). https://doi.org/10.1016/j.combustflame.2017.03.014

    Article  Google Scholar 

  51. Westbrook, C.K.: Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46, 191–210 (1981). https://doi.org/10.1016/0010-2180(82)90015-3

    Article  Google Scholar 

  52. Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures. Ph.D. thesis, Brandenburgischen Technischen Universität Cottbus (2003)

  53. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989). https://doi.org/10.1016/0021-9991(89)90035-1

  54. Deiterding, R.: Detonation structure simulation with AMROC. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) High Performance Computing and Communications, pp. 916–927. Springer, Berlin (2005). https://doi.org/10.1007/11557654_103

    Chapter  Google Scholar 

  55. Deiterding, R.: A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct. 87, 769–783 (2009). https://doi.org/10.1016/j.compstruc.2008.11.007

    Article  Google Scholar 

  56. Deiterding, R.: High-resolution numerical simulation and analysis of mach reflection structures in detonation waves in low-pressure H\(_2\)–O\(_2\)2\(_2\)–Ar mixtures: a summary of results obtained with the adaptive mesh refinement framework AMROC. J. Combust. 2011, 298–305 (2011). https://doi.org/10.1155/2011/738969

    Article  Google Scholar 

  57. Ralf, D.: Block-structured adaptive mesh refinement: theory, implementation and application. ESAIM Proc. 34, 97–150 (2011). https://doi.org/10.1051/proc/201134002

    Article  MathSciNet  MATH  Google Scholar 

  58. Deiterding, R., Bader, G.: High-resolution simulation of detonations with detailed chemistry. In: Warnecke, G. (ed.) Analysis and Numerics for Conservation Laws, pp. 69–91. Springer, Berlin (2005). https://doi.org/10.1007/3-540-27907-5_4

    Chapter  Google Scholar 

  59. Smirnov, N.N., Betelin, V.B., Nikitin, V.F., Stamov, L.I., Altoukhov, D.I.: Accumulation of errors in numerical simulations of chemically reacting gas dynamics. Acta Astronaut. 117, 338–355 (2015). https://doi.org/10.1016/j.actaastro.2015.08.013

    Article  Google Scholar 

  60. Smirnov, N.N., Betelin, V.B., Shagaliev, R.M., Nikitin, V.F., Belyakov, I.M., Deryuguin, Yu.N., Aksenov, S.V., Korchazhkin, D.A.: Hydrogen fuel rocket engines simulation using LOGOS code. Int. J. Hydrog. Energy 39, 10748–10756 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.150

    Article  Google Scholar 

  61. Singh, G., Clarke, J.F.: Transient phenomena in the initiation of a mechanically driven plane detonation. Proc. R. Soc. Lond. A 438, 23–46 (1992). https://doi.org/10.1098/rspa.1992.0091

    Article  MATH  Google Scholar 

  62. Lee, J.H.S.: Initiation of gaseous detonation. Annu. Rev. Phys. Chem. 28, 75–104 (1977)

    Article  Google Scholar 

  63. Radulescu, M.I., Higgins, A.J., Lee, J.H.S., Murray, S.B.: On the explosion length invariance in direct initiation of detonation. Proc. Combust. Inst. 28, 637–644 (2000). https://doi.org/10.1016/S0082-0784(00)80264-7

    Article  Google Scholar 

  64. Li, J., Mi, X., Higgins, A.J.: Effect of spatial heterogeneity on near-limit propagation of a pressure-dependent detonation. Proc. Combust. Inst. 35, 2025–2032 (2015). https://doi.org/10.1016/j.proci.2014.06.039

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 12072036), Project of State Key Laboratory of Explosion Science and Technology (QNKT19-01), and Beijing Institute of Technology Innovation Program (2021CX02002). We appreciate helpful discussions with John H.S. Lee at McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Additional information

Communicated by N. Smirnov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Chen, D., Hao, L. et al. Numerical study of direct initiation for one-dimensional Chapman–Jouguet detonations by reactive Riemann problems. Shock Waves 32, 25–53 (2022). https://doi.org/10.1007/s00193-021-01056-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01056-0

Keywords

Navigation