Skip to main content
Log in

Numerical study on the shock transitions during off-design operation of a dual throat thruster

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Numerical simulation of the shock transitions during off-design operation of a dual throat nozzle (DTN) is presented. The DTN is a typical passive-altitude-compensation nozzle that exhibits a unique shock transition process during its thrust chambers’ simultaneous operation. The axisymmetric, compressible, turbulent DTN flow field was simulated using a finite-volume Riemann solver based on the advection upstream splitting method. The solution procedure was validated using the experimental wall pressure data reported for a cold flow DTN configuration. The evolution of shock transition from regular reflection to Mach reflection and its reversal was captured. The shock transition hysteresis, its mechanism and control using wall heat transfer were also investigated. Results help improve the off-design operation of the DTN when it is used for a single-stage-to-orbit space mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Freeman, D.C., Jr., Talay, T.A., Austin, R.E.: Reusable launch vehicle technology program. Acta Astronaut. 41(11), 777–790 (1997). https://doi.org/10.1016/S0094-5765(97)00197-5

    Article  Google Scholar 

  2. Ostlund, J., Muhammad-Klingmann, B.: Supersonic flow separation with application to rocket engine nozzles. Appl. Mech. Rev. 58(3), 143–177 (2005). https://doi.org/10.1115/1.1894402

    Article  Google Scholar 

  3. Hagemann, G., Immich, H., Nguyen, T.V., Dumnov, G.E.: Advanced rocket nozzles. J. Propuls. Power 14(5), 620–634 (1998). https://doi.org/10.2514/2.5354

    Article  Google Scholar 

  4. Lundgreen, R., Nickerson, G., O’Brien, C.: Dual throat thruster cold flow analysis. ALRC Report F 32666 (1978)

  5. Ben-Dor, G., Ivanov, M., Vasilev, E., Elperin, T.: Hysteresis processes in the regular reflection \(\leftrightarrow \) Mach reflection transition in steady flows. Prog. Aerosp. Sci. 38(4–5), 347–387 (2002). https://doi.org/10.1016/S0376-0421(02)00009-X

    Article  Google Scholar 

  6. Chpoun, A., Ben-Dor, G.: Numerical confirmation of the hysteresis phenomenon in the regular to the Mach reflection transition in steady flows. Shock Waves 5(4), 199–203 (1995). https://doi.org/10.1007/BF01419001

    Article  MATH  Google Scholar 

  7. Ivanov, M.S., Vandromme, D., Fomin, V., Kudryavtsev, A., Hadjadj, A., Khotyanovsky, D.: Transition between regular and Mach reflection of shock waves: new numerical and experimental results. Shock Waves 11(3), 199–207 (2001). https://doi.org/10.1007/PL00004075

    Article  MATH  Google Scholar 

  8. Ivanov, M., Gimelshein, S., Beylich, A.: Hysteresis effect in stationary reflection of shock waves. Phys. Fluids 7(4), 685–687 (1995). https://doi.org/10.1063/1.868591

    Article  MATH  Google Scholar 

  9. Hornung, H., Robinson, M.: Transition from regular to Mach reflection of shock waves part 2. The steady-flow criterion. J. Fluid Mech. 123, 155–164 (1982). https://doi.org/10.1017/S0022112082003000

  10. Ivanov, M., Ben-Dor, G., Elperin, T., Kudryavtsev, A., Khotyanovsky, D.: Flow-Mach-number-variation-induced hysteresis in steady shock wave reflections. AIAA J. 39(5), 972–974 (2001). https://doi.org/10.2514/2.1406

    Article  Google Scholar 

  11. Ivanov, M., Kudryavtsev, A., Nikiforov, S., Khotyanovsky, D., Pavlov, A.: Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel. Phys. Fluids 15(6), 1807–1810 (2003). https://doi.org/10.1063/1.1572874

    Article  MATH  Google Scholar 

  12. Gribben, B.J., Badcock, K.J., Richards, B.E.: Numerical study of shock-reflection hysteresis in an underexpanded jet. AIAA J. 38(2), 275–283 (2000). https://doi.org/10.2514/2.954

    Article  Google Scholar 

  13. Hadjadj, A., Kudryavtsev, A., Ivanov, M.: Numerical investigation of shock-reflection phenomena in overexpanded supersonic jets. AIAA J. 42(3), 570–577 (2004). https://doi.org/10.2514/1.989

    Article  Google Scholar 

  14. Shimshi, E., Ben-Dor, G., Levy, A.: Viscous simulation of shock-reflection hysteresis in overexpanded planar nozzles. J. Fluid Mech. 635, 189–206 (2009). https://doi.org/10.1017/S002211200900771X

    Article  MATH  Google Scholar 

  15. User Manual, ANSYS FLUENT release 17.0, Ansys Inc (2016)

  16. Liou, M.-S., Steffen, C.J., Jr.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  17. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

  18. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4(1), 625–632 (2003)

    Google Scholar 

  19. Silnikov, M., Chernyshov, M.: Supersonic flow gradients at an overexpanded nozzle lip. Shock Waves 28(4), 765–784 (2018). https://doi.org/10.1007/s00193-017-0772-2

    Article  Google Scholar 

  20. Silnikov, M.V., Chernyshov, M.V.: Incident shock strength evolution in overexpanded jet flow out of rocket nozzle. Acta Astronaut. 135, 172–180 (2017). https://doi.org/10.1016/j.actaastro.2016.11.025

    Article  Google Scholar 

  21. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd Ed. (Springer, 2007). https://doi.org/10.1007/978-3-540-71382-1

  22. Shimshi, E., Ben-Dor, G., Levy, A.: Viscous simulation of shock reflection hysteresis in ideal and tapered overexpanded planar nozzles. Shock Waves 21(3), 205–214 (2011). https://doi.org/10.1007/s00193-011-0325-z

    Article  MATH  Google Scholar 

  23. Martelli, E., Nasuti, F., Onofri, M.: Numerical calculation of FSS/RSS transition in highly overexpanded rocket nozzle flows. Shock Waves 20(2), 139–146 (2010). https://doi.org/10.1007/s00193-009-0244-4

    Article  Google Scholar 

  24. Kharati-Koopaee, M., Khaef, I.: Numerical study of wall cooling effects on transition between shock structures in a rocket propulsion nozzle. Proc. Inst. Mech. Eng. G: J. Aerosp. Eng. 229(1), 172–184 (2015). https://doi.org/10.1177/0954410014528886

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deepu.

Additional information

Communicated by O. Igra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakrishnan, S., Deepu, M. Numerical study on the shock transitions during off-design operation of a dual throat thruster. Shock Waves 31, 929–943 (2021). https://doi.org/10.1007/s00193-021-01037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01037-3

Keywords

Navigation