Skip to main content
Log in

Reflection of a converging shock over a double curved wedge

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The reflection of a converging cylindrical shock over a double curved wedge was investigated experimentally and numerically. The double curved wedge was specially designed to ensure that the wedge angle only changes at the corner during the cylindrical shock reflection. Seven different reflection processes existing in the planar case were reproduced in the converging case. The sudden variation of the wedge angle alters the strength of the disturbance propagating along the converging shock. Depending upon the type of the flow-induced pressure waves, which dominate the type of the wave behind the reflection over the second wedge, the propagation of the disturbance is either promoted or restrained. Comparison of the lengths of the disturbed shock front between the single wedge reflection and the double wedge reflection indicates that the history of the reflection over the first wedge would affect the reflection over the second wedge. Provided that the Mach reflection over the second wedge is fully developed, it approaches the Mach reflection of an identical shock over a single wedge with the same wedge angle as the second wedge. Relative to the planar case, the convex curved surface in the converging case promotes the disturbance propagation and increases the trajectory angle of the triple point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mach, E.: Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitz. Ber. Akad. Wiss. Wien 78, 819–838 (1878)

    Google Scholar 

  2. Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71382-1

    Book  MATH  Google Scholar 

  3. Hakkaki-Fard, A., Timofeev, E.: On numerical techniques for determination of the sonic point in unsteady inviscid shock reflections. Int. J. Aerosp. Innov. 4, 41–52 (2012). https://doi.org/10.1260/1757-2258.4.1-2.41

    Article  Google Scholar 

  4. Wang, H., Zhai, Z.: On regular reflection to Mach reflection transition in inviscid flow for shock reflection on a convex or straight wedge. J. Fluid Mech. 884, A27 (2020). https://doi.org/10.1017/jfm.2019.956

    Article  MathSciNet  MATH  Google Scholar 

  5. Geva, M., Ram, O., Sadot, O.: The regular reflection\(\rightarrow \)Mach reflection transition in unsteady flow over convex surfaces. J. Fluid Mech. 837, 48–79 (2018). https://doi.org/10.1017/jfm.2017.835

    Article  MathSciNet  MATH  Google Scholar 

  6. Skews, B.W., Kleine, H.: Flow features resulting from shock wave impact on a cylindrical cavity. J. Fluid Mech. 580, 481–493 (2007). https://doi.org/10.1017/S0022112007005757

    Article  MATH  Google Scholar 

  7. Skews, B., Kleine, H.: Unsteady flow diagnostics using weak perturbations. Exp. Fluids 46, 65–76 (2009). https://doi.org/10.1007/s00348-008-0539-8

    Article  Google Scholar 

  8. Gruber, S., Skews, B.: Weak shock wave reflection from concave surfaces. Exp. Fluids 54, 1571 (2013). https://doi.org/10.1007/s00348-013-1571-x

  9. Maclucas, D., Skews, B., Kleine, H.: Shock wave interactions within concave cavities. Exp. Fluids 61, 88 (2020). https://doi.org/10.1007/s00348-020-2914-z

  10. Cohen, A., Skews, B.: Very weak shock wave reflection off curved surfaces. Exp. Fluids 61, 174 (2020). https://doi.org/10.1007/s00348-020-03009-2

  11. Yuan, X., Zhou, J., Mi, X., Ng, H.D.: Model for triplepoint trajectory of shock reflection over cylindrical concave wedge. AIAA J. 58, 2770–2775 (2020). https://doi.org/10.2514/1.J059030

    Article  Google Scholar 

  12. Skews, B.W., Blitteswijk, A.: Shock wave reflection off coupled surfaces. Shock Waves 21, 491–498 (2011). https://doi.org/10.1007/s00193-011-0334-y

    Article  Google Scholar 

  13. Geva, M., Ram, O., Sadot, O.: The non-stationary hysteresis phenomenon in shock wave reflections. J. Fluid Mech. 732, R1 (2013). https://doi.org/10.1017/jfm.2013.423

    Article  MATH  Google Scholar 

  14. Ram, O., Geva, M., Sadot, O.: High spatial and temporal resolution study of shock wave reflection over a coupled convex-concave cylindrical surface. J. Fluid Mech. 768, 219–239 (2015). https://doi.org/10.1017/jfm.2015.80

    Article  Google Scholar 

  15. Soni, V., Hadjadj, A., Chaudhuri, A., Ben-Dor, G.: Shock-wave reflections over double-concave cylindrical reflectors. J. Fluid Mech. 813, 70–84 (2017). https://doi.org/10.1017/jfm.2016.825

    Article  MathSciNet  MATH  Google Scholar 

  16. Krassovskaya, I.V., Berezkina, M.K.: Mechanism of formation of reflection configurations over concave surfaces. Shock Waves 27, 431–439 (2017). https://doi.org/10.1007/s00193-016-0701-9

    Article  Google Scholar 

  17. Ben-Dor, G., Dewey, J.M., Takayama, K.: The reflection of a plane shock wave over a double wedge. J. Fluid Mech. 176, 483–520 (1987). https://doi.org/10.1017/S0022112087000776

    Article  Google Scholar 

  18. Ben-Dor, G., Dewey, J.M., McMillin, D.J., Takayama, K.: Experimental investigation of the asymptotically approached Mach reflection over the second surface in a double wedge reflection. Exp. Fluids 6, 429–434 (1988). https://doi.org/10.1007/BF00196503

    Article  Google Scholar 

  19. Xie, P., Han, Z.Y., Takayama, K.: A study of the interaction between two triple points. Shock Waves 14, 29–36 (2005). https://doi.org/10.1007/s00193-005-0245-x

    Article  MATH  Google Scholar 

  20. Yin, J., Ding, J., Luo, X.: Numerical study on dusty shock reflection over a double wedge. Phys. Fluids 30, 013304 (2018). https://doi.org/10.1063/1.5008311

    Article  Google Scholar 

  21. Dewey, J.M., McMillin, D.J.: An analysis of the particle trajectories in spherical blast waves reflected from real and ideal surfaces. Can. J. Phys. 59, 1380–1390 (1981). https://doi.org/10.1139/p81-182

    Article  Google Scholar 

  22. Dewey, J.M., McMillin, D.J., Classen, D.F.: Photogrammetry of spherical shocks reflected from real and ideal surfaces. J. Fluid Mech. 81, 701–717 (1977). https://doi.org/10.1017/S0022112077002304

    Article  Google Scholar 

  23. Hu, T.C.J., Glass, I.I.: Blast wave reflection trajectories from a height of burst. AIAA J. 24, 607–610 (1986). https://doi.org/10.2514/3.9314

    Article  Google Scholar 

  24. Jiang, Z., Takayama, K., Moosad, K.P.B., Onodera, O., Sun, M.: Numerical and experimental study of a microblast wave generated by pulsed-laser beam focusing. Shock Waves 8, 337–349 (1998). https://doi.org/10.1007/s001930050126

    Article  Google Scholar 

  25. Liang, S.M., Hsu, J.L., Wang, J.S.: Numerical study of cylindrical blast-wave propagation and reflection. AIAA J. 39, 1152–1158 (2001). https://doi.org/10.2514/2.1429

    Article  Google Scholar 

  26. Liang, S.M., Wang, J.S., Chen, H.: Numerical study of spherical blast-wave propagation and reflection. Shock Waves 12, 59–68 (2002). https://doi.org/10.1007/s00193-002-0142-5

    Article  MATH  Google Scholar 

  27. Kleine, H., Timofeev, E., Takayama, K.: Laboratory-scale blast wave phenomena-optical diagnostics and applications. Shock Waves 14, 343–357 (2005). https://doi.org/10.1007/s00193-005-0279-0

    Article  Google Scholar 

  28. Zhang, F., Si, T., Zhai, Z., Luo, X., Yang, J., Lu, X.: Reflection of cylindrical converging shock wave over a plane wedge. Phys. Fluids 28, 086101 (2016). https://doi.org/10.1063/1.4961069

    Article  Google Scholar 

  29. Gray, B., Skews, B.: Reflection of a converging cylindrical shock wave segment by a straight wedge. Shock Waves 27, 551–563 (2017). https://doi.org/10.1007/s00193-017-0708-x

    Article  Google Scholar 

  30. Vignati, F., Guardone, A.: Leading edge reflection patterns for cylindrical converging shock waves over convex obstacles. Phys. Fluids 28, 096103 (2016). https://doi.org/10.1063/1.4960625

    Article  Google Scholar 

  31. Vignati, F., Guardone, A.: Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles. Phys. Fluids 29, 116104 (2017). https://doi.org/10.1063/1.4989384

    Article  Google Scholar 

  32. Ndebele, B.B., Skews, B.W.: The reflection of cylindrical shock wave segments on cylindrical concave wall segments. Shock Waves 28, 1185–1197 (2018). https://doi.org/10.1007/s00193-018-0812-6

    Article  Google Scholar 

  33. Wang, H., Zhai, Z., Luo, X., Yang, J., Lu, X.: A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection. Phys. Fluids 29, 086103 (2017). https://doi.org/10.1063/1.4999349

    Article  Google Scholar 

  34. von Neumann, J.: Oblique reflection of shock. Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, USA (1943)

  35. von Neumann, J.: Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC, USA (1943)

  36. Kleine, H., Timofeev, E., Hakkaki-Fard, A., Skews, B.: The influence of Reynolds number on the triple point trajectories at shock reflection off cylindrical surfaces. J. Fluid Mech. 740, 47–60 (2014). https://doi.org/10.1017/jfm.2013.634

    Article  Google Scholar 

  37. Sun, M., Takayama, K.: Conservative smoothing on an adaptive quadrilateral grid. J. Comput. Phys. 150, 143–180 (1999). https://doi.org/10.1006/jcph.1998.6167

    Article  MATH  Google Scholar 

  38. Zhai, Z., Si, T., Luo, X., Yang, J.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104 (2011). https://doi.org/10.1063/1.3623272

    Article  Google Scholar 

  39. Zhai, Z., Wang, M., Si, T., Luo, X.: On the interaction of a planar shock with a light polygonal interface. J. Fluid Mech. 757, 800–816 (2014). https://doi.org/10.1017/jfm.2014.516

    Article  Google Scholar 

  40. Wang, M., Si, T., Luo, X.: Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54, 1427 (2013). https://doi.org/10.1007/s00348-012-1427-9

  41. Henderson, L.F.: Exact expressions for shock reflexion transition criteria in a perfect gas. Z. Angew. Math. Mech. 62, 258–261 (1982). https://doi.org/10.1002/zamm.19820620608

    Article  MATH  Google Scholar 

  42. Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45, 1293–1301 (1954). https://doi.org/10.1080/14786441208561138

    Article  MathSciNet  MATH  Google Scholar 

  43. Chisnell, R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2, 286–298 (1957). https://doi.org/10.1017/S0022112057000130

    Article  MathSciNet  MATH  Google Scholar 

  44. Whitham, G.B.: A new approach to problems of shock dynamics. Part I. Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957). https://doi.org/10.1017/S002211205700004X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12022201, 11772329, 91952205, and 11625211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhai.

Additional information

Communicated by O. Igra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhai, Z. & Luo, X. Reflection of a converging shock over a double curved wedge. Shock Waves 31, 439–455 (2021). https://doi.org/10.1007/s00193-021-01027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01027-5

Keywords

Navigation