Skip to main content
Log in

Impacts of grid turbulence on the side projection of planar shock waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

This article has been updated

Abstract

In this study, the characteristics of side-projected planar shock waves propagating through grid turbulence were investigated using a counter-driver shock tube. At the location of visualization of the shock–turbulence interactions, the range of the shock Mach numbers was \(M_{\mathrm {s}} = 1.01{-}1.15\) and the representative values of the turbulent Mach numbers \(\widetilde{M_{\mathrm {t}}}\) were \( 0.005{-}0.014\). The interaction length between the shock wave and grid turbulence was in the range approximately from \(-50\) to \(300\) times the integral length scale of the turbulence. For the interaction involving the strongest turbulence with \(\widetilde{M_{\mathrm {t}}} = 0.014\), the weakest planar shock wave with \(M_{\mathrm {s}} = 1.01\) was largely deformed and could not be detected on the projected shadowgraph and schlieren images. The density changes on the grayscale in the projected images of the shock waves weakened and expanded multidimensionally. This undetectable profile of the shock wave could indicate that the shock wave locally lost discontinuous property change profile. The shock waves with \(M_{\mathrm {s}} \ge 1.05\) did not show the undetectable profile in the projected image. In these cases, the projected thickness of the shock wave increased with an increase in the interaction length. The increase in the projected thickness became larger as the turbulent Mach number increased, and the shock Mach number decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 11 June 2021

    The original article has been updated with the missing supplementary material

References

  1. Andreopoulos, Y., Agui, J.H., Briassulis, G.: Shock wave–turbulence interactions. Annu. Rev. Fluid. Mech. 32, 309–345 (2000). https://doi.org/10.1146/annurev.fluid.32.1.309

    Article  MathSciNet  MATH  Google Scholar 

  2. Hubbard, H.H., Maglieri, D.J., Huckel, V., Hilton, D.A.: Ground measurements of sonic-boom pressures for the altitude range of 10,000 to 75,000 feet. NASA TR R-198 (1964)

  3. Kane, E.J.: Some effects of the atmosphere on sonic boom. NASA SP-147, pp. 49–64 (1967)

  4. Ribner, H.S., Morris, P.J., Chu, W.H.: Laboratory simulation of development of superbooms by atmospheric turbulence. J. Acoust. Soc. Am. 53, 926 (1973). https://doi.org/10.1121/1.1913411

    Article  Google Scholar 

  5. Barre, S., Alem, D., Bonnet, J.P.: Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34, 968–974 (1996). https://doi.org/10.2514/3.13175

    Article  Google Scholar 

  6. Barre, S., Alem, D., Bonnet, J.P.: Reply by the authors to H. S. Ribner. AIAA J. 36, 495–495 (1998). https://doi.org/10.2514/2.398

    Article  Google Scholar 

  7. Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993). https://doi.org/10.1017/S0022112093003519

    Article  Google Scholar 

  8. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009). https://doi.org/10.1063/1.3275856

    Article  MATH  Google Scholar 

  9. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds- and Mach-number effects in canonical shock-turbulence interaction. J. Fluid Mech. 717, 293–321 (2013). https://doi.org/10.1017/jfm.2012.573

    Article  MathSciNet  MATH  Google Scholar 

  10. Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756, R1 (2014). https://doi.org/10.1017/jfm.2014.477

    Article  Google Scholar 

  11. Livescu, D., Ryu, J.: Vorticity dynamics after the shock–turbulence interaction. Shock Waves 26, 241–251 (2016). https://doi.org/10.1007/s00193-015-0580-5

    Article  Google Scholar 

  12. Tian, Y., Jaberi, F.A., Li, Z., Livescu, D.: Numerical study of variable density turbulence interaction with a normal shock wave. J. Fluid Mech. 829, 551–588 (2017). https://doi.org/10.1017/jfm.2017.542

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, C.H., Donzis, D.A.: Shock-turbulence interactions at high turbulence intensities. J. Fluid Mech. 870, 813–847 (2019). https://doi.org/10.1017/jfm.2019.248

    Article  MathSciNet  MATH  Google Scholar 

  14. Tanaka, K., Watanabe, T., Nagata, K., Sasoh, A., Sakai, Y., Hayase, T.: Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence. Phys. Fluids 30(3), 035105 (2018). https://doi.org/10.1063/1.5019867

    Article  Google Scholar 

  15. Donzis, D.A.: Amplification factors in shock–turbulence interactions: effect of shock thickness. Phys. Fluids 24, 011705 (2012). https://doi.org/10.1063/1.3676449

    Article  Google Scholar 

  16. Donzis, D.A.: Shock structure in shock–turbulence interactions. Phys. Fluids 24, 126101 (2012). https://doi.org/10.1063/1.4772064

    Article  Google Scholar 

  17. Lele, S.K.: Shock–jump relations in a turbulent flow. Phys. Fluids 4, 2900 (1992). https://doi.org/10.1063/1.858343

    Article  MATH  Google Scholar 

  18. Lipkens, B., Blackstock, D.T.: Model experiment to study sonic boom propagation through turbulence. J. Acoust. Soc. Am. 103, 148 (1998). https://doi.org/10.1121/1.421114

    Article  Google Scholar 

  19. Kim, J.-H., Sasoh, A., Matsuda, A.: Modulations of a weak shock wave through a turbulent slit jet. Shock Waves 20, 339–345 (2010). https://doi.org/10.1007/s00193-010-0265-z

    Article  MATH  Google Scholar 

  20. Tamba, T., Furukawa, D., Aoki, Y., Kayumi, M., Iwakawa, A., Sasoh, A., Matsunaga, T., Izumo, M., Sugiyama, Y., Matsumura, T., Nakayama, Y.: Field experiment of blast wave pressure modulation past a turbulent flow. Sci. Technol. Energ. Mater. 77, 91–97 (2016)

    Google Scholar 

  21. Sasoh, A., Harasaki, T., Kitamura, T., Takagi, D., Ito, S., Matsuda, A., Nagata, K., Sakai, Y.: Statistical behavior of post-shock overpressure past grid turbulence. Shock Waves 24, 489–500 (2014). https://doi.org/10.1007/s00193-014-0507-6

    Article  Google Scholar 

  22. Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A., Ito, Y.: Changes in divergence-free grid turbulence interacting with a weak spherical shock wave. Phys. Fluids 29, 065114 (2017). https://doi.org/10.1063/1.4984835

    Article  Google Scholar 

  23. Inokuma, K., Watanabe, T., Nagata, K., Sasoh, A., Sakai, Y.: Finite response time of shock wave modulation by turbulence. Phys. Fluids 29, 051701 (2017). https://doi.org/10.1063/1.4982932

    Article  Google Scholar 

  24. Inokuma, K., Watanabe, T., Nagata, K., Sakai, Y.: Statistics of overpressure fluctuations behind a weak shock wave interacting with turbulence. Phys. Fluids 31, 085119 (2019). https://doi.org/10.1063/1.5110185

    Article  Google Scholar 

  25. Dosanjh, D.S.: Interaction of grids with traveling shock waves. NACA Report No. TN-3680 (1956)

  26. Honkan, A., Andreopoulos, J.: Rapid compression of grid-generated turbulence by a moving shock wave. Phys. Fluids A Fluid Dyn. 4, 2562 (1992). https://doi.org/10.1063/1.858443

    Article  Google Scholar 

  27. Honkan, A., Watkins, C.B., Andreopoulos, J.: Experimental study of interactions of shock wave with free-stream turbulence. J. Fluid Eng. 116, 763–769 (1994). https://doi.org/10.1115/1.2911847

  28. Agui, J.H., Briassulis, G., Andreopoulos, Y.: Studies of interactions of a propagating shock wave with a decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech. 524, 143–195 (2005). https://doi.org/10.1017/S0022112004002514

    Article  MATH  Google Scholar 

  29. Xanthos, S., Briassulis, G., Andreopoulos, Y.: Interaction of decaying freestream turbulence with a moving shock wave: pressure field. J. Propul. Power 18, 1289–1297 (2002). https://doi.org/10.2514/2.6066

    Article  Google Scholar 

  30. Tamba, T., Nguyen, T.M., Takeya, K., Harasaki, T., Iwakawa, A., Sasoh, A.: Counter-driver shock tube. Shock Waves 25, 667–674 (2015). https://doi.org/10.1007/s00193-015-0594-z

    Article  Google Scholar 

  31. Tamba, T., Fukushima, G., Kayumi, M., Iwakawa, A., Sasoh, A.: Experimental investigation of the interaction of a weak shock with grid turbulence in a counter-driver shock tube. Phys. Rev. Fluids 4, 073401 (2019). https://doi.org/10.1103/PhysRevFluids.4.073401

    Article  Google Scholar 

  32. Fukushima, G., Tamba, T., Iwakawa, A., Sasoh, A.: Influence of cellophane diaphragm rupture processes on the shock wave formation in a shock tube. Shock Waves 30, 545–557 (2020). https://doi.org/10.1007/s00193-020-00951-2

    Article  Google Scholar 

  33. Britan, A., Igra, O., Ben-Dor, G., Shapiro, H.: Shock wave attenuation by grids and orifice plates. Shock Waves 16, 1–15 (2006). https://doi.org/10.1007/s00193-006-0019-0

    Article  Google Scholar 

  34. Roach, P.E.: The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow 8, 82–92 (1987). https://doi.org/10.1016/0142-727X(87)90001-4

    Article  Google Scholar 

  35. Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A., Terashima, O., Saito, H., Harasaki, T.: On invariants in grid turbulence at moderate Reynolds numbers. J. Fluid Mech. 738, 378–406 (2014). https://doi.org/10.1017/jfm.2013.595

    Article  Google Scholar 

  36. Briassulis, G., Agui, J.H., Andreopoulos, Y.: The structure of weakly compressible grid-turbulence. J. Fluid Mech. 432, 219–283 (2001). https://doi.org/10.1017/S0022112000003402

    Article  MATH  Google Scholar 

  37. Tanaka, K., Watanabe, T., Nagata, K.: Statistical analysis of deformation of a shock wave propagating in a local turbulent region. Phys. Fluids 32, 096107 (2020). https://doi.org/10.1063/5.0019784

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the kind donation of cellophane diaphragm by Futamura Chemical Co., Ltd. We are also grateful for the valuable comments from K. Nagata, K. Kinefuchi, T. Watanabe, and K. Tanaka, Nagoya University, and the valuable technical assistance of N. Shiraki, M. Nakakimura, and A. Saito, Technical Division, Nagoya University. This research was supported by the JSPS KAKENHI Grants Nos. 17J10997 and 18H03813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fukushima.

Additional information

Communicated by K. Kontis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 1554 KB)

Supplementary material 2 (avi 2036 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, G., Ogawa, S., Wei, J. et al. Impacts of grid turbulence on the side projection of planar shock waves. Shock Waves 31, 101–115 (2021). https://doi.org/10.1007/s00193-021-01000-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01000-2

Keywords

Navigation