Skip to main content
Log in

An experimental study of detonation propagation and re-initiation for acetylene–air mixtures in a narrow channel

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Detonation propagation, re-initiation, and flame propagation in acetylene–air mixtures were investigated in a channel with a transverse dimension that is comparable with the width of the detonation cell. Experiments were carried out in a channel with a square cross-section of 5 mm \(\times \) 5 mm. The detonation wave passed from the driver section into the transparent test section. The trajectories of the propagation of glowing combustion products (high-speed image sequences) were recorded, and high-speed schlieren image sequences of the reaction zone and shock waves were obtained. The flame front velocity was measured. The intensity of the shock waves was measured with piezoelectric pressure transducers. Depending on the equivalence ratio ER, four modes of combustion propagation were detected: (1) steady detonation; (2) decay and re-initiation of detonation; (3) detonation decay and flame acceleration; and (4) detonation decay and the absence of flame acceleration. Quantitative evaluation of the boundary layer thickness was carried out. The intensity of the shock wave and the flame front velocity were analysed for different modes. It was shown that the re-initiation of detonation in a mixture of acetylene and air with \(\text {ER} = 1.6\) is characterized by a spatial interval of \(1000\pm 50\) mm and a time interval of \(1300\pm 100~\upmu \hbox {s}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

D :

Hydraulic diameter of the channel

d :

Internal diameter of the orifice

\(\mathrm{ER}\) :

Equivalence ratio, the molar excess of fuel

H :

Width of the square cross-section channel

h :

The smallest side of the rectangular channel

M :

Mach number of the shock wave

N :

Number of processed tests

\(T_0\) :

Initial temperature (293 K)

\(T_1\) :

Temperature behind the shock wave front

\(\triangle t\) :

Time interval between the passage of the shock wave and the flame front

V :

Flame front velocity

\(V_\mathrm{m}\) :

Maximum flame front velocity after the detonation decay

\(V_{\mathrm{CJ}}\) :

Velocity of Chapman–Jouguet detonation

w :

Shock wave velocity

\(w_\mathrm{D}\) :

Detonation velocity

x :

Distance along the channel

z :

Distance behind the shock wave

\(\alpha \) :

Molar fraction of fuel

\(\gamma \) :

Heat capacity ratio

\(\delta \) :

Boundary layer thickness

\(\eta \) :

Viscosity at the post-shock state

\(\lambda \) :

Detonation cell size

\(\nu \), \(\xi \) :

Auxiliary parameters for calculation of the velocity deficit

\(\rho _0\) :

Initial density

CW :

Compression waves

DW :

Detonation wave

FF :

Flame front

LSW :

Leading shock wave

PMT :

Photomultiplier tube

SSW :

Secondary shock wave

References

  1. Mirels, H.: Shock tube test time limitation due to turbulent wall boundary layer. AIAA J. 2(1), 84–93 (1964). https://doi.org/10.2514/3.2218

    Article  MATH  Google Scholar 

  2. Mirels, H.: Attenuation in a shock tube due to unsteady-boundary-layer action. National Advisory Committee for Aeronautics, Report 1333 (1957). https://ntrs.nasa.gov/api/citations/19930092322/downloads/19930092322.pdf

  3. Golub, V.V., Gurentsov, E.V., Emel’yanov, A.V., Eremin, A.V., Fortov, V.E.: Energy gain of the detonation pyrolysis of acetylene. High Temp. 53(3), 363–369 (2015). https://doi.org/10.1134/S0018151X15030062

    Article  Google Scholar 

  4. Gao, Y., Ng, H.D., Lee, J.H.: Experimental characterization of galloping detonations in unstable mixtures. Combust. Flame 162(6), 2405–2413 (2015). https://doi.org/10.1016/j.combustflame.2015.02.007

    Article  Google Scholar 

  5. Vasil’ev, A.A.: Quasi-steady regimes of wave propagation in active mixtures. Shock Waves 18(4), 245–253 (2008). https://doi.org/10.1007/s00193-008-0168-4

    Article  MATH  Google Scholar 

  6. Manzhalei, V.I.: Low-velocity detonation limits of gaseous mixtures. Combust. Explos. Shock Waves 35(3), 296–302 (1999). https://doi.org/10.1007/BF02674453

    Article  Google Scholar 

  7. Zhang, B., Wang, C., Shen, X., Yan, L., Yan, B., Xia, Y.: Velocity fluctuation analysis near detonation propagation limits for stoichiometric methane–hydrogen–oxygen mixture. Int. J. Hydrogen Energy 41(39), 17750–17759 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.017

    Article  Google Scholar 

  8. Tsuboi, N., Morii, Y., Hayashi, A.K.: Two-dimensional numerical simulation on galloping detonation in a narrow channel. Proc. Combust. Inst. 34(2), 1999–2007 (2013). https://doi.org/10.1016/j.proci.2012.06.132

    Article  Google Scholar 

  9. Jackson, S., Lee, B.J., Shepherd, J.: E: Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen. Combust. Flame 167, 24–38 (2016). https://doi.org/10.1016/j.combustflame.2016.02.030

    Article  Google Scholar 

  10. Lee, J.J., Dupré, G., Knystautas, R., Lee, J.H.: Doppler interferometry study of unstable detonations. Shock Waves 5(3), 175–181 (1995). https://doi.org/10.1007/BF01435525

    Article  Google Scholar 

  11. Edwards, D.H., Morgan, J.M.: Instabilities in detonation waves near the limits of propagation. J. Phys. D Appl. Phys. 10(17), 2377–2387 (1977). https://doi.org/10.1088/0022-3727/10/17/009/pdf

    Article  Google Scholar 

  12. Cao, W., Gao, D., Ng, H.D., Lee, J.H.S.: Experimental investigation of near-limit gaseous detonations in small diameter spiral tubing. Proc. Combust. Inst. 37(3), 3555–3563 (2019). https://doi.org/10.1016/j.proci.2018.08.027

    Article  Google Scholar 

  13. Manzhalei, V.I.: Detonation regimes of gases in capillaries. Combust. Explos. Shock Waves 28(3), 296–302 (1992). https://doi.org/10.1007/BF00749647

    Article  Google Scholar 

  14. Ul’yanitskii, V.Y.: Galloping mode in a gas detonation. Combust. Explos. Shock Waves 17(1), 93–97 (1981). https://doi.org/10.1007/BF00772793

    Article  Google Scholar 

  15. Ishii, K., Gronig, H.: Behavior of detonation waves at low pressures. Shock Waves 8(1), 55–61 (1998). https://doi.org/10.1007/s001930050098

    Article  MATH  Google Scholar 

  16. Wu, M.H., Kuo, W.C.: Transmission of near-limit detonation wave through a planar sudden expansion in a narrow channel. Combust. Flame 159(11), 3414–3422 (2012). https://doi.org/10.1016/j.combustflame.2012.06.006

    Article  Google Scholar 

  17. Kagan, L., Sivashinsky, G.: On the transition from deflagration to detonation in narrow tubes. Flow Turbul. Combust. 84(3), 423–437 (2010). https://doi.org/10.1007/s10494-010-9252-9

    Article  MATH  Google Scholar 

  18. Kagan, L.: On the transition from deflagration to detonation in narrow channels. Math. Model. Nat. Phenomena 2(2), 40–55 (2007). https://doi.org/10.1051/mmnp:2008018

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhang, P., Yuan, L., Pan, Z., Zhu, Y.: Flame propagation and detonation initiation distance of ethylene/oxygen in narrow gap. Appl. Therm. Eng. 110, 1274–1282 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.037

    Article  Google Scholar 

  20. Wu, M.H., Burke, M.P., Son, S.F., Yetter, R.A.: Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Combust. Inst. 31(2), 2429–2436 (2007). https://doi.org/10.1016/j.proci.2006.08.098

    Article  Google Scholar 

  21. Chan, H.P., Wu, M.H.: Stages of flame acceleration and detonation transition in a thin channel filled with stoichiometric ethylene/oxygen mixture. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, MA, Paper 1017 (2017)

  22. Nagai, K., Okabe, T., Kim, K., Yoshihashi, T., Obara, T., Ohyagi, S.: A study on DDT processes in a narrow channel. Proceedings of the XXVI International Symposium on Shock Waves, vol. 1, pp. 203–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-85168-4_31

  23. Oran, E.S., Gamezo, V.N.: Flame acceleration and detonation transition in narrow tubes. 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Paper 240 (2005)

  24. Ott, J.D., Oran, E.S., Anderson Jr., J.D.: A mechanism for flame acceleration in narrow tubes. AIAA J. 41(7), 1391–1396 (2003). https://doi.org/10.2514/2.2088

    Article  Google Scholar 

  25. Gao, Y., Ng, H.D., Lee, J.H.S.: Minimum tube diameters for steady propagation of gaseous detonations. Shock Waves 24(4), 447–454 (2014). https://doi.org/10.1007/s00193-014-0505-8

    Article  Google Scholar 

  26. Peraldi, O., Knystautas, R., Lee, J.H.: Criteria for transition to detonation in tubes. Symp. (Int.) Combust. 21(1), 1629–1637 (1988). https://doi.org/10.1016/S0082-0784(88)80396-5

    Article  Google Scholar 

  27. Ciccarelli, G., Wang, Z., Lu, J., Cross, M.: Effect of orifice plate spacing on detonation propagation. J. Loss Prev. Process Ind. 49, 739–744 (2017). https://doi.org/10.1016/j.jlp.2017.03.014

    Article  Google Scholar 

  28. Pan, Z., Chen, K., Pan, J., Zhang, P., Zhu, Y., Qi, J.: An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps. Exp. Therm. Fluid Sci. 88, 354–360 (2017). https://doi.org/10.1016/j.expthermflusci.2017.06.015

    Article  Google Scholar 

  29. Pan, Z., Qi, J., Pan, J., Zhang, P., Zhu, Y., Gui, M.: Fabrication of a helical detonation channel: effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures. Combust. Flame 192, 1–9 (2018). https://doi.org/10.1016/j.combustflame.2018.01.041

    Article  Google Scholar 

  30. Dupré, G., Joannon, J., Knystautas, R., Lee, J.: Unstable detonations in the near-limit regime in tubes. Symp. (Int.) Combust. 23(1), 1813–1820 (1991). https://doi.org/10.1016/S0082-0784(06)80461-3

    Article  Google Scholar 

  31. Vasil’ev, L.A.: Shadow Methods. Nauka, Moscow (1968). (in Russian)

    Google Scholar 

  32. Golovastov, S.V., Bivol, G.Y., Alexandrova, D.: Evolution of detonation wave and parameters of its attenuation when passing along a porous coating. Exp. Therm. Fluid Sci. 100, 124–134 (2019). https://doi.org/10.1016/j.expthermflusci.2018.08.030

    Article  Google Scholar 

  33. Williams, A., Smith, D.B.: Combustion and oxidation of acetylene. Chem. Rev. 70(2), 267–293 (1970). https://doi.org/10.1021/cr60264a004

    Article  Google Scholar 

  34. Vasil’ev, A.A.: Dynamic parameters of detonation. In: Zhang, F. (ed.) Shock Waves Science and Technology Library, vol. 6, pp. 213–279. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22967-1_4

    Chapter  Google Scholar 

  35. Knystautas, R.: Measurement of cell size in hydrocarbon–air mixtures and predictions of critical tube diameter, critical initiation energy and detonability limits. Prog. Astronaut. Aeronaut. 94, 23–37 (1984). https://doi.org/10.2514/5.9781600865695.0023.0037

    Article  Google Scholar 

  36. Tieszen, S.R., Stamps, D.W., Westbrook, C.K., Pitz, W.J.: Gaseous hydrocarbon–air detonations. Combust. Flame 84(3–4), 376–390 (1991). https://doi.org/10.1016/0010-2180(91)90013-2

    Article  Google Scholar 

  37. Vasil’ev, A.A.: Cell size as the main geometric parameter of a multifront detonation wave. J. Propul. Power 22(6), 1245–1260 (2006). https://doi.org/10.2514/1.20348

    Article  Google Scholar 

  38. Bull, D.C., Elsworth, J.E., Shuff, P.J., Metcalfe, E.: Detonation cell structures in fuel/air mixtures. Combust. Flame 45, 7–22 (1982). https://doi.org/10.1016/0010-2180(82)90028-1

    Article  Google Scholar 

  39. Weynants, R. R.: An Experimental investigation of shock–wave diffraction over compression and expansion corners. Report No. UTIAS-TN-126, Toronto University (Ontario) Institute for Aerospace Studies (1968)

  40. Zhang, B., Shen, X., Pang, L., Gao, Y.: Detonation velocity deficits of H\(_2\)/O\(_2\)/Ar mixture in round tube and annular channels. Int. J. Hydrogen Energy 40(43), 15078–15087 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.036

    Article  Google Scholar 

  41. Ishii, K., Monwar, M.: Detonation propagation with velocity deficits in narrow channels. Proc. Combust. Inst. 33(2), 2359–2366 (2011). https://doi.org/10.1016/j.proci.2010.07.051

    Article  Google Scholar 

  42. Camargo, A., Ng, H.D., Chao, J., Lee, J.H.S.: Propagation of near-limit gaseous detonations in small diameter tubes. Shock Waves 20(6), 499–508 (2010). https://doi.org/10.1007/s00193-010-0253-3

    Article  MATH  Google Scholar 

  43. Gooderum, P.B.: An experimental study of the turbulent boundary layer on a shock-tube wall. Report No. 4243, Langley Aeronautical Laboratory, Langley Field, VA, USA (1958) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930085207.pdf

  44. Fay, J.A.: Two-dimensional gaseous detonations: velocity deficit. Phys. Fluids 2(3), 283–289 (1959). https://doi.org/10.1063/1.1705924

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Program of Fundamental Support of Academic Institutes, Russia, No. AAAA-A19-119020890034-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Golovastov.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovastov, S.V., Bivol, G.Y. & Golub, V.V. An experimental study of detonation propagation and re-initiation for acetylene–air mixtures in a narrow channel. Shock Waves 31, 49–61 (2021). https://doi.org/10.1007/s00193-020-00985-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00985-6

Keywords

Navigation