Skip to main content

Specific heat effects in two-dimensional shock refractions

Abstract

Compressible mixtures in supersonic flows are subject to significant temperature changes via shock waves and expansions, which affect several properties of the flow. Besides the widely studied variable transport effects such as temperature-dependent viscosity and conductivity, vibrational and rotational molecular energy storage is also modified through the variation of the heat capacity \(c_p\) and heat capacity ratio \(\gamma \), especially in hypersonic flows. Changes in the composition of the mixture may also modify its value through the species mass fraction \(Y_\alpha \), thereby affecting the compression capacity of the flow. Canonical configurations are studied here to explore their sharply conditioned mechanical equilibrium under variations of these thermal models. In particular, effects of \(c_p(T,Y_\alpha )\) and \(\gamma (T,Y_\alpha )\) on the stability of shock-impinged supersonic shear and mixing layers are addressed, on condition that a shock wave is refracted. It is found that the limits defining regular structures are affected (usually broadened out) by the dependence of heat capacities with temperature. Theoretical and high-fidelity numerical simulations exhibit a good agreement in the prediction of regular shock reflections and their post-shock aerothermal properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Urzay, J.: Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593–627 (2018). https://doi.org/10.1146/annurev-fluid-122316-045217

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Candler, G.V.: Rate effects in hypersonic flows. Annu. Rev. Fluid Mech. 51, 379–402 (2019). https://doi.org/10.1146/annurev-fluid-010518-040258

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Ma, K., Li, J., Li, Q., Liu, Y., Li, X., Ma, D., Ao, W.: Evolution characteristics of subsonic—supersonic mixing layer impinged by shock waves. Aerosp. Sci. Technol. 106, 106150 (2020). https://doi.org/10.1016/j.ast.2020.106150

    Article  Google Scholar 

  4. 4.

    Andreopoulos, Y., Agui, J.H., Briassulis, G.: Shock wave–turbulence interactions. Annu. Rev. Fluid Mech. 32(1), 309–345 (2000). https://doi.org/10.1146/annurev.fluid.32.1.309

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Cook, A.W., Cabot, W.H.: Hyperviscosity for shock–turbulence interactions. J. Comput. Phys. 203(2), 379–385 (2005). https://doi.org/10.1016/j.jcp.2004.09.011

    Article  MATH  Google Scholar 

  6. 6.

    Wouchuk, J., Huete, C., Velikovich, A.: Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79(6), 066315 (2009). https://doi.org/10.1103/PhysRevE.79.066315

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756, R1 (2014). https://doi.org/10.1017/jfm.2014.477

    Article  Google Scholar 

  8. 8.

    Livescu, D.: Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech. 52(1), 309–341 (2020). https://doi.org/10.1146/annurev-fluid-010719-060114

    Article  MATH  Google Scholar 

  9. 9.

    Nishihara, K., Wouchuk, J.G., Matsuoka, C., Ishizaki, R., Zhakhovsky, V.V.: Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Philos. Trans. Math. Phys. Eng. Sci. 368(1916), 1769–1807 (2010). https://doi.org/10.1098/rsta.2009.0252

    Article  MATH  Google Scholar 

  10. 10.

    Stanic, M., Stellingwerf, R.F., Cassibry, J.T., Abarzhi, S.I.: Scale coupling in Richtmyer–Meshkov flows induced by strong shocks. Phys. Plasmas 19(8), 082706 (2012). https://doi.org/10.1063/1.4744986

    Article  Google Scholar 

  11. 11.

    Dell, Z., Pandian, A., Bhowmick, A., Swisher, N., Stanic, M., Stellingwerf, R., Abarzhi, S.: Maximum initial growth-rate of strong-shock-driven Richtmyer–Meshkov instability. Phys. Plasmas 24(9), 090702 (2017). https://doi.org/10.1063/1.4986903

    Article  Google Scholar 

  12. 12.

    Lin, J., Bai, C.Y., Wu, Z.N.: Study of asymmetrical shock wave reflection in steady supersonic flow. J. Fluid Mech. 864, 848–875 (2019). https://doi.org/10.1017/jfm.2019.18

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Laguarda, L., Hickel, S., Schrijer, F.F.J., van Oudheusden, B.W.: Dynamics of unsteady asymmetric shock interactions. J. Fluid Mech. 888, A18 (2020). https://doi.org/10.1017/jfm.2020.28

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Glaz, H.M., Colella, P., Glass, I., Deschambault, R.: A numerical study of oblique shock-wave reflections with experimental comparisons. Proc. R. Soc. Lond. A Math. Phys. Sci. 398(1814), 117–140 (1985). https://doi.org/10.1098/rspa.1985.0028

    Article  Google Scholar 

  15. 15.

    Dewey, J., McMillin, D.: Observation and analysis of the Dach reflection of weak uniform plane shock waves. Part 1. Observations. J. Fluid Mech. 152, 49–66 (1985). https://doi.org/10.1017/S0022112085000568

    Article  Google Scholar 

  16. 16.

    Dewey, J., McMillin, D.: Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 2. Analysis. J. Fluid Mech. 152, 67–81 (1985). https://doi.org/10.1017/S002211208500057X

    Article  Google Scholar 

  17. 17.

    Ben-Dor, G.: Shock Wave Reflection Phenomena, vol. 2. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71382-1

    Book  MATH  Google Scholar 

  18. 18.

    Lighthill, M.J.: On boundary layers and upstream influence II. Supersonic flows without separation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 217(1131), 478–507 (1953). https://doi.org/10.1098/rspa.1953.0075

    Article  MATH  Google Scholar 

  19. 19.

    Henderson, L.: The reflexion of a shock wave at a rigid wall in the presence of a boundary layer. J. Fluid Mech. 30(4), 699–722 (1967). https://doi.org/10.1017/S0022112067001715

    Article  MATH  Google Scholar 

  20. 20.

    Stewartson, K., Williams, P.: Self-induced separation. Proc. R. Soc. Lond. A Math. Phys. Sci. 312(1509), 181–206 (1969). https://doi.org/10.1098/rspa.1969.0148

    Article  MATH  Google Scholar 

  21. 21.

    Matheis, J., Hickel, S.: On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech. 776, 200–234 (2015). https://doi.org/10.1017/jfm.2015.319

    Article  Google Scholar 

  22. 22.

    Adler, M.C., Gaitonde, D.V.: Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291–341 (2018). https://doi.org/10.1017/jfm.2018.70

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Dupont, P., Piponniau, S., Dussauge, J.: Compressible mixing layer in shock-induced separation. J. Fluid Mech. 863, 620–643 (2019). https://doi.org/10.1017/jfm.2018.987

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Fu, L., Karp, M., Bose, S.T., Moin, P., Urzay, J.: Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. (2020). https://doi.org/10.1017/jfm.2020.935

    Article  MATH  Google Scholar 

  25. 25.

    Henderson, L.: The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26(3), 607–637 (1966). https://doi.org/10.1017/S0022112066001435

    Article  Google Scholar 

  26. 26.

    Estruch-Samper, D., Chandola, G.: Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness. J. Fluid Mech. 848, 154–192 (2018). https://doi.org/10.1017/jfm.2018.350

    Article  Google Scholar 

  27. 27.

    Martínez-Ruiz, D., Huete, C., Martínez-Ferrer, P.J., Mira, D.: Irregular self-similar configurations of shock-wave impingement on shear layers. J. Fluid Mech. 872, 889–927 (2019). https://doi.org/10.1017/jfm.2019.336

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Mach, E.: Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien 78, 819–838 (1878)

    Google Scholar 

  29. 29.

    Hornung, H.: Regular and Mach reflection of shock waves. Annu. Rev. Fluid Mech. 18(1), 33–58 (1986). https://doi.org/10.1146/annurev.fl.18.010186.000341

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Riley, N.: Interaction of a shock wave with a mixing region. J. Fluid Mech. 7(3), 321–339 (1960). https://doi.org/10.1017/S0022112060000116

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Huete, C., Urzay, J., Sánchez, A.L., Williams, F.A.: Weak-shock interactions with transonic laminar mixing layers of fuels for high-speed propulsion. AIAA J. 54(3), 966–979 (2016). https://doi.org/10.2514/1.J054419

    Article  Google Scholar 

  32. 32.

    Rikanati, A., Sadot, O., Ben-Dor, G., Shvarts, D., Kuribayashi, T., Takayama, K.: Shock-wave Mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon. Phys. Rev. Lett. 96(17), 174503 (2006). https://doi.org/10.1103/PhysRevLett.96.174503

    Article  Google Scholar 

  33. 33.

    Rubidge, S., Skews, B.: Shear-layer instability in the Mach reflection of shock waves. Shock Waves 24(5), 479–488 (2014). https://doi.org/10.1007/s00193-014-0515-6

    Article  Google Scholar 

  34. 34.

    Patel, A., Singh, M.: Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity. Shock Waves 29(3), 427–439 (2019). https://doi.org/10.1007/s00193-018-0855-8

    Article  Google Scholar 

  35. 35.

    Singh, M., Patel, A.: Shock wave structure in a non-ideal gas under temperature and density-dependent viscosity and heat conduction. Theor. Comput. Fluid Dyn. 33(6), 537–559 (2019). https://doi.org/10.1007/s00162-019-00505-y

    MathSciNet  Article  Google Scholar 

  36. 36.

    Liu, H., Chen, H., Zhang, B., Liu, H.: Effects of Mach number on non-Rankine–Hugoniot shock zone of Mach reflection. J. Spacecr. Rockets 56(3), 761–770 (2019). https://doi.org/10.2514/1.A34251

    Article  Google Scholar 

  37. 37.

    Shi, X., Zhu, Y., Yang, J., Luo, X.: Mach stem deformation in pseudo-steady shock wave reflections. J. Fluid Mech. 861, 407–421 (2019). https://doi.org/10.1017/jfm.2018.920

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Meyerhoff, L.: An extension of the theory of the one-dimensional shock-wave structure. J. Aeronaut. Sci. 17(12), 775–786 (1950). https://doi.org/10.2514/8.1806

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Kestin, J.: The influence of the temperature variation of the specific heats of air in shock-wave calculations. J. Aeronaut. Sci. 18(5), 351–353 (1951). https://doi.org/10.2514/8.1953

    Article  MATH  Google Scholar 

  40. 40.

    Orudzhaliev, E.: On the theory of shock waves in the dynamics of a real gas. Int. J. Heat Mass Transf. 6(11), 935–940 (1963). https://doi.org/10.1016/0017-9310(63)90048-6

    Article  Google Scholar 

  41. 41.

    John, B., Kulkarni, V.N., Natarajan, G.: Shock wave boundary layer interactions in hypersonic flows. Int. J. Heat Mass Transf. 70, 81–90 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.072

    Article  Google Scholar 

  42. 42.

    Ben-Dor, G., Glass, I.I.: Domains and boundaries of non-stationary oblique shock-wave reflexions. 1. Diatomic gas. J. Fluid Mech. 92(3), 459–496 (1979). https://doi.org/10.1017/S0022112079000732

    Article  Google Scholar 

  43. 43.

    Ben-Dor, G., Glass, I.I.: Domains and boundaries of non-stationary oblique shock-wave reflexions. 2. Monatomic gas. J. Fluid Mech. 96(4), 735–756 (1980). https://doi.org/10.1017/S0022112080002339

    Article  Google Scholar 

  44. 44.

    Deschambault, R., Glass, I.: An update on non-stationary oblique shock-wave reflections: actual isopycnics and numerical experiments. J. Fluid Mech. 131, 27–57 (1983). https://doi.org/10.1017/S0022112083001226

    Article  Google Scholar 

  45. 45.

    Henderson, L., Macpherson, A.: On the irregular refraction of a plane shock wave at a Mach number interface. J. Fluid Mech. 32(1), 185–202 (1968). https://doi.org/10.1017/S0022112068000650

    Article  Google Scholar 

  46. 46.

    Abd-El-Fattah, A., Henderson, L.F., Lozzi, A.: Precursor shock waves at a slow-fast gas interface. J. Fluid Mech. 76(1), 157–176 (1976). https://doi.org/10.1017/S0022112076003182

    Article  MATH  Google Scholar 

  47. 47.

    Abd-El-Fattah, A., Henderson, L.: Shock waves at a fast-slow gas interface. J. Fluid Mech. 86(1), 15–32 (1978). https://doi.org/10.1017/S0022112078000981

    Article  Google Scholar 

  48. 48.

    Abd-El-Fattah, A., Henderson, L.: Shock waves at a slow-fast gas interface. J. Fluid Mech. 89(1), 79–95 (1978). https://doi.org/10.1017/S0022112078002475

    Article  Google Scholar 

  49. 49.

    Ahlborn, B.: A simple iteration for shock wave calculations with the enthalpy coefficient. Can. J. Phys. 53(10), 976–979 (1975). https://doi.org/10.1139/p75-124

    Article  Google Scholar 

  50. 50.

    Chase Jr., M.W., Curnutt, J.L., Downey Jr., J.R., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: JANAF thermochemical tables, 1982 supplement. J. Phys. Chem. Ref. Data 11(3), 695–940 (1982). https://doi.org/10.1063/1.555666

    Article  Google Scholar 

  51. 51.

    Ferrer, P.J.M., Buttay, R., Lehnasch, G., Mura, A.: A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers. Comput. Fluids 89, 88–110 (2014). https://doi.org/10.1016/j.compfluid.2013.10.014

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Kuo, Y.: Dissociation effects in hypersonic viscous flows. J. Aeronaut. Sci. 24(5), 345–350 (1957). https://doi.org/10.2514/8.3847

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Treanor, C.E., Marrone, P.V.: Effect of dissociation on the rate of vibrational relaxation. Phys. Fluids 5(9), 1022–1026 (1962). https://doi.org/10.1063/1.1724467

    Article  Google Scholar 

  54. 54.

    Josyula, E., Bailey, W.F.: Vibration-dissociation coupling using master equations in nonequilibrium hypersonic blunt-body flow. J. Thermophys. Heat Transf. 15(2), 157–167 (2001). https://doi.org/10.2514/2.6604

    Article  Google Scholar 

  55. 55.

    Bauer, E.: Physics of high-temperature air. Part 1. Basics. Final report, October 1987–December 1988. Technical Report, Institute for Defense Analyses, Alexandria, VA (USA) (1990). https://doi.org/10.21236/ADA224584

  56. 56.

    Huete, C., Sánchez, A.L., Williams, F.A., Urzay, J.: Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer. J. Fluid Mech. 784, 74–108 (2015). https://doi.org/10.1017/jfm.2015.585

  57. 57.

    Huete, C., Sánchez, A.L., Williams, F.A.: Diffusion-flame ignition by shock-wave impingement on a hydrogen-air supersonic mixing layer. J. Propul. Power 33(1), 256–263 (2017). https://doi.org/10.2514/1.B36236

    Article  Google Scholar 

  58. 58.

    Martínez-Ruiz, D., Huete, C., Sánchez, A.L., Williams, F.A.: Interaction of oblique shocks and laminar shear layers. AIAA J. 56(3), 1023–1030 (2018). https://doi.org/10.2514/1.J056302

    Article  Google Scholar 

  59. 59.

    Abarzhi, S.I., Goddard, W.A.: Interfaces and mixing: nonequilibrium transport across the scales. Proc. Nat. Acad. Sci. 116(37), 18171–18174 (2019). https://doi.org/10.1073/pnas.1818855116

    Article  Google Scholar 

  60. 60.

    Ilyin, D.V., Goddard III, W.A., Abarzhi, S.I.: Inertial dynamics of an interface with interfacial mass flux: stability and flow fields’ structure, inertial stabilization mechanism, degeneracy of Landau’s solution, effect of energy fluctuations, and chemistry-induced instabilities. Phys. Fluids 32(8), 082105 (2020). https://doi.org/10.1063/5.0013165

    Article  Google Scholar 

  61. 61.

    Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002). https://doi.org/10.1017/S0022112001006978

    Article  MATH  Google Scholar 

  62. 62.

    Mahle, I., Foysi, H., Sarkar, S., Friedrich, R.: On the turbulence structure in inert and reacting compressible mixing layers. J. Fluid Mech. 593, 171–180 (2007). https://doi.org/10.1017/S002211200700891

    Article  MATH  Google Scholar 

  63. 63.

    Stanley, S., Sarkar, S.: Simulations of spatially developing two-dimensional shear layers and jets. Theor. Comput. Fluid Dyn. 9(2), 121–147 (1997). https://doi.org/10.1007/s001620050036

    Article  MATH  Google Scholar 

  64. 64.

    Fu, S., Li, Q.: Numerical simulation of compressible mixing layers. Int. J. Heat Fluid Flow 27(5), 895–901 (2006). https://doi.org/10.1016/j.ijheatfluidflow.2006.03.028

    Article  Google Scholar 

  65. 65.

    Ferrer, P.J.M., Lehnasch, G., Mura, A.: Compressibility and heat release effects in high-speed reactive mixing layers. I: growth rates and turbulence characteristics. Combust. Flame 180, 284–303 (2017). https://doi.org/10.1016/j.combustflame.2016.09.008

    Article  Google Scholar 

Download references

Acknowledgements

Work produced with the support of a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation and Project PID2019-108592RB-C41 and PID2019-108592RA-C43 (MICINN/ FEDER, UE). Numerical simulations were carried out on the MareNostrum 4 supercomputer with the Grant RES FI-2019-1-0046. The authors gratefully acknowledge Arnaud Mura, CNRS researcher at Institut PPRIME in France, for the numerical tool CREAMS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Huete.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by E. Timofeev.

Appendix: Numerical implementation

Appendix: Numerical implementation

Further details on the implementation of the flow solver CREAMS are provided in this appendix. It consists of a high-fidelity fluid dynamics code for fully compressible Navier–Stokes equations. The scheme is a spatial seventh-order accurate WENO and a third-order total variation diminishing Runge–Kutta [51].

The system of equations that describe a three-dimensional, unsteady, compressible, and viscous gas mixture composed of N reactive species, where external forces and radiation are neglected, is expressed as

$$\begin{aligned}&\frac{\partial \rho }{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} = 0, \end{aligned}$$
(27)
$$\begin{aligned}&\frac{\partial (\rho u_{{i}})}{\partial t} + \frac{\partial (\rho u_{{i}} u_j + p)}{\partial x_j} = \frac{\partial (\rho \tau _{ij})}{\partial x_j}, \quad i = 1, 2, 3, \end{aligned}$$
(28)
$$\begin{aligned}&\frac{\partial (\rho e_{\mathrm t})}{\partial t} + \frac{\partial [(\rho e_{\mathrm t} + p)u_j]}{\partial x_j} = \frac{\partial (\rho \tau _{ij} u_{{i}})}{\partial x_j} - \frac{\partial q}{\partial x_j}, \end{aligned}$$
(29)
$$\begin{aligned}&\frac{\partial (\rho Y_{\alpha })}{\partial t} {+} \frac{\partial (\rho Y_{\alpha } u_j)}{\partial x_j} {=} - \frac{\partial (\rho Y_{\alpha } V_{\alpha j})}{\partial x_j}, \quad \alpha {=} 1, \ldots , N. \nonumber \\ \end{aligned}$$
(30)

The pressure of the gas mixture is given by p, which is related to the density \(\rho \) and temperature T of the mixture via the equation of state of a perfect gas, i.e., \(p = \rho R T / W\), where \(R=8.314~\,{\mathrm {J/(mol \cdot K)}}\) is the universal constant for perfect gases. To close this system of equations in thermodynamics terms, both constant and variable specific heat ratios are considered. What is more, non-reactive inviscid computations without heat conduction and mass diffusion of species are performed with the intention of reproducing ideal flow theoretical conditions and isolating the thermally perfect gas effects. Therefore, the r.h.s. terms in (28)–(30) are set to zero for the simulations carried out.

The numerical setup used to compute a two-dimensional mixing layers follows previous works based on temporally developing [61, 62] and spatially developing [27, 63,64,65] shear layers. The flow is initialized using a hyperbolic tangent for the velocity profile

$$\begin{aligned} u_1 = \frac{U_1+U_2}{2} + \frac{U_1-U_2}{2} \tanh \left( \frac{2 x_2}{\delta _{\omega ,0}} \right) , \end{aligned}$$
(31)

where \(U_1\) and \(U_2\) are the mean streamwise velocities of the top and bottom streams, respectively, and \(\delta _{\omega ,0}\) is the initial vorticity thickness of the shear layer

$$\begin{aligned} \delta _{\omega ,0}= \frac{U_1-U_2}{| \partial { \langle u_1 \rangle _{\mathrm{f}} } / \partial {x_2} |_{\max ,x_1=0} }, \end{aligned}$$
(32)

where brackets indicate Reynolds-averaged quantities and the subscript f is utilized for Favre-averaged quantities. The initial vorticity thickness controls the amount of initial dissipation between the two streams and has an associated Reynolds number

$$\begin{aligned} {\mathrm {Re}}_{\omega ,0}=\frac{(\rho _1 + \rho _2) |U_1 - U_2| {\delta _{\omega ,0}}}{\mu _1 + \mu _2} \end{aligned}$$
(33)

that is set to \({\mathrm {Re}}_{\omega ,0}=640\) in this work following [61, 64, 65]. This condition provides \(\delta _{\omega ,0}=2.79 \cdot 10^{-5} \,{\mathrm {m}}\) (air–air shear layer), \(1.41 \cdot 10^{-4} \,{\mathrm {m}}\) (ethane–air mixing layer), and \(1.74 \cdot 10^{-5} \,{\mathrm {m}}\) (propane–air mixing layer), which are employed to define the grid size (\(\varDelta x \approx 0.168 \delta _{\omega ,0}\) for a typical DNS). Although the definition of a vorticity thickness is not compatible with the idealization of the flow, for which the hyperbolic tangent profile would asymptotically degenerate into a step function, \(\delta _{\omega ,0}\ne 0\) is still employed for the following two reasons. Firstly, it characterizes the numerical estimated grid size in the absence of diffusion terms in the conservation equations. Secondly, it was previously shown that the choice of \(\delta _{\omega ,0}\ne 0\) at the inlet boundary does not fail to reproduce the theoretical inviscid flow field [27].

The computational domain is bounded by an area measuring roughly \(800\ \delta _{\omega ,0}\times 800\ \delta _{\omega ,0}\). The region of interest is placed at the top left corner and covers a squared region of dimensions \(300\ \delta _{\omega ,0}\times 300\ \delta _{\omega ,0}\), which provides large span for the information to reach the outflow boundaries. This primary area is discretized with a constant grid size \(\varDelta x = 0.25\ \delta _{\omega ,0}\) while the rest of the computational domain is progressively meshed with a linear stretch toward the exit with a constant factor of 5%. The boundary conditions that reproduce the mixing or shear layer problem hold a supersonic inlet where Dirichlet conditions are imposed for pressure, temperature, and mixture composition at the left boundary, together with the velocity profile of (31). In addition, the top boundary includes Rankine–Hugoniot jump conditions for an ideal gas mixture. Furthermore, non-reflecting conditions are applied at the far bottom and right boundaries. Finally, a constant CFL number of 0.5 is selected for time integration.

Fig. 9
figure9

Numerical simulation values for the transmitted shock angle \(\sigma _{\mathrm{t}}\) as a function of the lower-stream Mach number \(M_2\). Computations made for air–air mixing layers with \(M_1 =2\), \(\sigma _{\mathrm{i}}=50^\circ \), and variable specific heat \(c_p(T)\). The gas mixture is treated as an inviscid flow as well as a viscous flow using both simplified (ST) and detailed (DT) transport models. Relative differences of transmitted shock angle under the two viscous simulations with respect to the inviscid case

As already mentioned, inviscid numerical simulations have been carried out in this work with the aim of reproducing ideal flow theoretical conditions. We expect that viscous effects will only play a significant role in very specific areas (e.g., regions with high levels of turbulence that may appear ahead of the shock impingement, but whose characteristic scales are smaller than that of the mixing layer thickness [3]). Viscous effects may be also important in determining the vortex roll-up pattern generated downstream, specially in irregular configurations where additional evolutionary scales are present. Vibrational relaxation, on the other hand, may exhibit large-scale effects related to the regular configuration limits [14]. To demonstrate that our inviscid simulations do retain the same behavior observed in real-flows of shear and mixing layers under similar conditions, we have conducted the reciprocal viscous simulations. Figure 9 shows the evolution of the transmitted shock angle with the Mach number of the lower stream for a shear layer of air impinged with a shock wave at \(50^\circ \). The flow is assumed to be either inviscid or viscous using both a simplified and a detailed description of the corresponding transport terms which are found at the r.h.s. of (27)–(30). Without getting into too much detail, the simplified description relies upon a mixture-averaged formulation based on the Hirschfelder and Curtiss approximation while the detailed description takes into account differential diffusion, Soret, Dufour, and bulk viscosity effects [51]. It can be readily seen from this figure that the three simulations fall within the same curve as expected. A much closer inspection at the transmitted shock angle relative differences between the two viscous cases with respect to the inviscid one, see Fig. 9, reveals that these differences are well below \(\pm 0.5\%\) and suddenly spike at \(M_2 \approx 7.5\). After this, the relative errors reduce to roughly 0.5%, but, unfortunately, the lack of additional data beyond \(M_2=8\) does not allow us to estimate the trend of the relative error. We believe that the relative error will continue to increase as the value of the transmitted angle diminishes. Indeed, the algorithm used to compute this angle must identify two sufficiently distant points along the transmitted shock: while the first point is always very close to the triple point, the second one might fall outside the squared region of interest (featuring a small grid size) for flattened transmitted shocks, thus deteriorating the accuracy of the measurement.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Ruiz, D., Huete, C., Martínez-Ferrer, P.J. et al. Specific heat effects in two-dimensional shock refractions. Shock Waves 31, 1–17 (2021). https://doi.org/10.1007/s00193-020-00977-6

Download citation

Keywords

  • Shock waves
  • Shear layers
  • Specific heats
  • Thermally perfect gas
  • Hypersonic flow