Skip to main content
Log in

Shock wave structure in non-ideal dilute gases under variable Prandtl number

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper investigates the structure of normal shock waves for a planar steady flow of non-ideal dilute gases under variable viscosity and thermal conductivity using the Navier–Stokes–Fourier approach to the continuum model. The gas is assumed to follow the simplified van der Waals equation of state along with the power-law temperature-dependent coefficients of shear viscosity, bulk viscosity, and thermal conductivity. A closed system of nonlinear differential equations having a variable Prandtl number (\(\Pr \)) is formulated. Exact analytical solutions of the shock wave structure in non-ideal gases are derived for \(\Pr \rightarrow \infty \) and \(\Pr \rightarrow 0\) limits, and the corresponding profiles for velocity and temperature are obtained. For \(\Pr \rightarrow 0\), an isothermal shock is encountered for high Mach numbers. It appears sooner in non-ideal gases. The solution profiles for \(\Pr =2/3\) are obtained numerically and compared with the corresponding profiles for \(\Pr \rightarrow 0\), 3/4, and \(\infty \) under the same initial conditions. Qualitative agreement is obtained with the theoretical and experimental results for the shock wave structure. The inverse shock thickness is computed for different values of \(\Pr \), and it is found that the inverse shock thickness increases with an increase in the Prandtl number. The bulk viscosity, the non-idealness parameter, the specific heat ratio, the power-law index, and the pre-shock Mach number have a significant effect on the shock wave structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Prandtl, L.: A Relationship Between Heat Exchange and Fluid Flow Resistance. Springer, Berlin (1910)

    Google Scholar 

  2. Becker, R.: Stosswelle und detonation. Zeitschrift für Physik A Hadrons Nuclei 8(1), 321–362 (1922). https://doi.org/10.1007/BF01329605

    Article  Google Scholar 

  3. Thomas, L.: Note on Becker’s theory of the shock front. J. Chem. Phys. 12(11), 449–453 (1944). https://doi.org/10.1063/1.1723889

    Article  Google Scholar 

  4. Morduchow, M.: On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas. J. Aeronaut. Sci. 16(11), 674–684 (1949). https://doi.org/10.2514/8.11882

    Article  MathSciNet  Google Scholar 

  5. von Mises, R.: On the thickness of a steady shock wave. J. Aeronaut. Sci. 17(9), 551–554 (1950). https://doi.org/10.2514/8.1723

    Article  MathSciNet  Google Scholar 

  6. Meyerhoff, L.: An extension of the theory of the one-dimensional shock-wave structure. J. Aeronaut. Sci. 17(12), 775–786 (1950). https://doi.org/10.2514/8.1806

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2, 617–642 (1953)

    MathSciNet  MATH  Google Scholar 

  8. Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74(3), 497–513 (1976). https://doi.org/10.1017/S0022112076001912

    Article  Google Scholar 

  9. Hoover, W.G.: Structure of a shock-wave front in a liquid. Phys. Rev. Lett. 42(23), 1531 (1979). https://doi.org/10.1103/PhysRevLett.42.1531

    Article  Google Scholar 

  10. Khidr, M., Mahmoud, M.: The shock-wave structure for arbitrary Prandtl numbers and high Mach numbers. Astrophys. Space Sci. 113(2), 289–301 (1985). https://doi.org/10.1007/BF00650964

    Article  Google Scholar 

  11. Frezzotti, A., Sgarra, C.: Numerical analysis of a shock-wave solution of the Enskog equation obtained via a Monte Carlo method. J. Stat. Phys. 73(1–2), 193–207 (1993). https://doi.org/10.1007/BF01052757

    Article  MATH  Google Scholar 

  12. Ohwada, T.: Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5(1), 217–234 (1993). https://doi.org/10.1063/1.858777

    Article  MathSciNet  MATH  Google Scholar 

  13. de Haro, M.L., Garzó, V.: Shock waves in a dense gas. Phys. Rev. E 52(5), 5688 (1995). https://doi.org/10.1103/PhysRevE.52.5688

    Article  Google Scholar 

  14. Iannelli, J.: An exact non-linear Navier–Stokes compressible-flow solution for CFD code verification. Int. J. Numer. Methods Fluids 72(2), 157–176 (2013). https://doi.org/10.1002/fld.3731

    Article  MathSciNet  Google Scholar 

  15. Johnson, B.: Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726, R4 (2013). https://doi.org/10.1017/jfm.2013.262

    Article  MathSciNet  MATH  Google Scholar 

  16. Myong, R.: Analytical solutions of shock structure thickness and asymmetry in Navier–Stokes/Fourier framework. AIAA J. 52(5), 1075–1081 (2014). https://doi.org/10.2514/1.J052583

    Article  Google Scholar 

  17. Anand, R., Yadav, H.: The effects of viscosity on the structure of shock waves in a non-ideal gas. Acta Phys. Pol. A 129(1), 28–34 (2016). https://doi.org/10.12693/APhysPolA.129.28

    Article  Google Scholar 

  18. Singh, M., Patel, A.: Travelling wave solution of shock structure in an unsteady flow of a viscous non-ideal gas. Ganita 68(1), 165–179 (2018)

    MathSciNet  Google Scholar 

  19. Singh, M., Patel, A., Bajargaan, R.: Travelling wave solution of a Riemann problem and shock structure in an unsteady flow of a perfect gas under viscosity. Int. J. Heat Technol. 37(3), 909–917 (2019). https://doi.org/10.18280/ijht.370329

    Article  Google Scholar 

  20. Patel, A., Singh, M.: Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity. Shock Waves 27(2), 427–439 (2019). https://doi.org/10.1007/s00193-018-0855-8

    Article  MathSciNet  Google Scholar 

  21. Singh, M., Patel, A.: Shock wave structure in a non-ideal gas under temperature and density-dependent viscosity and heat conduction. Theor. Comput. Fluid Dyn. 33(6), 537–559 (2019). https://doi.org/10.1007/s00162-019-00505-y

    Article  MathSciNet  Google Scholar 

  22. Uribe, F.J., Velasco, R.M.: Exact solution of shock waves in dilute gases. Phys. Rev. E 100(2), 023118 (2019). https://doi.org/10.1103/PhysRevE.100.023118

    Article  MathSciNet  Google Scholar 

  23. Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  24. Prangsma, G., Alberga, A., Beenakker, J.: Ultrasonic determination of the volume viscosity of \(\text{ N}_2\), CO, CH\(_4\) and CD\(_4\) between 77 and 300 K. Physica 64(2), 278–288 (1973). https://doi.org/10.1016/0031-8914(73)90048-7

    Article  Google Scholar 

  25. Tisza, L.: Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61, 531–536 (1942). https://doi.org/10.1103/PhysRev.61.531

    Article  Google Scholar 

  26. Hunter, J.L., Welch, T.J., Montrose, C.J.: Excess absorption in mercury. J. Acoust. Soc. Am. 35(10), 1568–1570 (1963). https://doi.org/10.1121/1.1918756

    Article  Google Scholar 

  27. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulations of the Gas Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  28. Torrilhon, M., Struchtrup, H.: Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171–198 (2004). https://doi.org/10.1017/S0022112004009917

    Article  MathSciNet  MATH  Google Scholar 

  29. Roberts, P.H., Wu, C.C.: Structure and stability of a spherical implosion. Phys. Lett. A 213(1–2), 59–64 (1996). https://doi.org/10.1016/0375-9601(96)00082-5

    Article  Google Scholar 

  30. Vishwakarama, J.P., Chaube, V., Patel, A.: Self-similar solution of a shock propagation in a non-ideal gas. Int. J. Appl. Mech. Eng. 12(3), 813–829 (2007)

    Google Scholar 

  31. Zeldovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, New York (2002). https://doi.org/10.1016/B978-0-12-395672-9.X5001-2

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by Non-NET fellowship of University of Delhi vide letter No. Sch/139/Non-NET/Maths./M.Phil/2017-18/156 dated January 04, 2018, funded by University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Patel.

Additional information

Communicated by D. Zeitoun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khapra, D., Patel, A. Shock wave structure in non-ideal dilute gases under variable Prandtl number. Shock Waves 30, 585–602 (2020). https://doi.org/10.1007/s00193-020-00972-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00972-x

Keywords

Navigation