Modelling of vibrational nonequilibrium effects on the H2–air mixture ignition under shock wave conditions in the state-to-state and mode approximations

Abstract

Kinetics of physicochemical processes occurring during combustion of a hydrogen–air mixture initiated by a shock wave was studied using state-to-state and mode models that take into account nonequilibrium vibrational excitation of N2, O2, H2, and OH molecules. The effect of vibrational–translational relaxation on the induction time was considered: it was shown that the delay in establishing thermodynamic equilibrium between vibrational and translational degrees of freedom slows down the initiation of combustion, while the intensity of this effect depends on the temperature and pressure of the gas behind the shock front. An analysis of the peculiarities of vibrational distributions showed that populations of the lower vibrational levels of molecules in the course of chain reactions of combustion behind the shock wave are close to the Boltzmann ones. Therefore, it is sufficient to use the mode approximation. Calculations of the induction time using models of mode approximation showed a significant dependence of the results on the choice of the nonequilibrium factor model. If the nonequilibrium factors are calculated based on the summation of level rate constants of physicochemical processes, the accuracy of the mode model is not inferior to the accuracy of the state-to-state approximation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Capitelli, M., Ferreira, C.M., Gordiets, B.F., Osipov, A.I.: Plasma Kinetics in Atmospheric Gases. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04158-1

    Google Scholar 

  2. 2.

    Nagnibeda, E., Kustova, E.: Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01390-4

    Google Scholar 

  3. 3.

    Park, C.: Review of chemical-kinetic problems of future NASA missions, I: earth entries. J. Thermophys. Heat Transf. 7, 385–398 (1993). https://doi.org/10.2514/3.431

    Article  Google Scholar 

  4. 4.

    Capitelli, M., Armenise, I., Gorse, C.: State-to-state approach in the kinetics of air components under re-entry conditions. J. Thermophys. Heat Transf. 11, 570–578 (1997). https://doi.org/10.2514/2.6281

    Article  Google Scholar 

  5. 5.

    Capitelli, M., Armenise, I., Bruno, D., Cacciatore, M., Celiberto, R., Colonna, G., De Pascale, O., Diomede, P., Esposito, F., Gorse, C., Hassouni, K., Laricchiuta, A., Longo, S., Pagano, D., Pietanza, D., Rutigliano, M.: Non-equilibrium plasma kinetics: a state-to-state approach. Plasma Sources Sci. Technol. 16, 30–44 (2007). https://doi.org/10.1088/0963-0252/16/1/S03

    Article  Google Scholar 

  6. 6.

    Sharikov, I., Surzhikov, S., Capitelli, M., Colonna, G.: Kinetic models of non-equilibrium radiation for strong air shock waves. 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-585 (2006). https://doi.org/10.2514/6.2006-586

  7. 7.

    Treanor, C.E., Adamovich, I.V., Williams, M.J., Rich, J.W.: Kinetics of nitric oxide formation behind shock waves. J. Thermophys. Heat Transf. 10(2), 193–199 (1996). https://doi.org/10.2514/3.775

    Article  Google Scholar 

  8. 8.

    Loukhovitski, B.I., Starik, A.M.: Modeling of vibration-electronic-chemistry coupling in the atomic-molecular oxygen system. Chem. Phys. 360, 18–26 (2009). https://doi.org/10.1016/j.chemphys.2009.04.003

    Article  Google Scholar 

  9. 9.

    Kunova, O.V., Nagnibeda, E.A.: State-to-state description of reacting air flows behind shock waves. Chem. Phys. 441, 66–76 (2014). https://doi.org/10.1016/j.chemphys.2014.07.007

    Article  Google Scholar 

  10. 10.

    Kadochnikov, I.N., Loukhovitski, B.I., Starik, A.M.: Thermally non-equilibrium effects in shock-induced nitrogen plasma: modelling study. Plasma Sources Sci. Technol. 22, 035013 (2013). https://doi.org/10.1088/0963-0252/22/3/035013

    Article  Google Scholar 

  11. 11.

    Kadochnikov, I.N., Loukhovitski, B.I., Starik, A.M.: A modified model of mode approximation for nitrogen plasma based on the state-to-state approach. Plasma Sources Sci. Technol. 24, 055008 (2015). https://doi.org/10.1088/0963-0252/24/5/055008

    Article  Google Scholar 

  12. 12.

    Kadochnikov, I.N., Arsentiev, I.V.: Kinetics of nonequilibrium processes in air plasma formed behind shock waves: state-to-state consideration. J. Phys. D Appl. Phys. 51, 374001 (2018). https://doi.org/10.1088/1361-6463/aad1db

    Article  Google Scholar 

  13. 13.

    Starik, A.M., Titova, N.S., Arsentiev, I.V.: Comprehensive analysis of the effect of atomic and molecular metastable state excitation on air plasma composition behind strong shock waves. Plasma Sources Sci. Technol. 19, 015007 (2010). https://doi.org/10.1088/0963-0252/19/1/015007

    Article  Google Scholar 

  14. 14.

    Kustova, E.V., Nagnibeda, E.A., Shevelev, Y.D., Syzranova, N.G.: Comparison of different models for non-equilibrium CO2 flows in a shock layer near a blunt body. Shock Waves 21(3), 273–287 (2011). https://doi.org/10.1007/s00193-011-0324-0

    Article  Google Scholar 

  15. 15.

    Armenise, I., Reynier, P., Kustova, E.: Advanced models for vibrational and chemical kinetics applied to mars entry aerothermodynamics. J. Thermophys. Heat Transf. 30(4), 705–720 (2016). https://doi.org/10.2514/1.T4708

    Article  Google Scholar 

  16. 16.

    Liao, D., Liu, S., Huang, J., Jian, H., Xie, A., Wang, Z.: Measurement and numerical simulation of shock standoff distances over hypersonic spheres in CO2 in a ballistic range. Shock Waves 30, 131–138 (2020). https://doi.org/10.1007/s00193-019-00923-1

    Article  Google Scholar 

  17. 17.

    Fiévet, R., Koo, H., Raman, V.: Numerical simulation of a scramjet isolator with thermodynamic nonequilibrium. 22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2015-3418 (2015). https://doi.org/10.2514/6.2015-3418

  18. 18.

    Fiévet, R., Raman, V.: Effect of vibrational nonequilibrium on isolator shock structure. J. Propul. Power 34(5), 1334–1344 (2018). https://doi.org/10.2514/1.B37108

    Article  Google Scholar 

  19. 19.

    Fiévet, R., Voelkel, S., Koo, H., Raman, V., Varghese, P.L.: Effect of thermal nonequilibrium on ignition in scramjet combustors. Proc. Combust. Inst. 36, 2901–2910 (2017). https://doi.org/10.1016/j.proci.2016.08.066

    Article  Google Scholar 

  20. 20.

    Starik, A.M., Titova, N.S.: Effects of thermal nonequilibrium in combustion. 33rd Thermophysics Conference, AIAA Paper 1999-3637 (1999). https://doi.org/10.2514/6.1999-3637

  21. 21.

    Taylor, B.D., Kessler, D.A., Gamezo, V.N., Oran, E.S.: Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst. 34, 2009–2016 (2013). https://doi.org/10.1016/j.proci.2012.05.045

    Article  Google Scholar 

  22. 22.

    Voelkel, S., Masselot, D., Varghese, P.L., Raman, V.: Analysis of hydrogen–air detonation waves with vibrational nonequilibrium. AIP Conf. Proc. 1786(1), 070015 (2016). https://doi.org/10.1063/1.4967591

    Article  Google Scholar 

  23. 23.

    Shi, L., Shen, H., Zhang, P., Zhang, D., Wen, C.: Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189(5), 841–853 (2017). https://doi.org/10.1080/00102202.2016.1260561

    Article  Google Scholar 

  24. 24.

    Koo, H., Raman, V., Varghese, P.L.: Direct numerical simulation of supersonic combustion with thermal nonequilibrium. Proc. Combust. Inst. 35(2), 2145–2153 (2015). https://doi.org/10.1016/j.proci.2014.08.005

    Article  Google Scholar 

  25. 25.

    Ju, Y., Sun, W.: Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48, 21–83 (2015). https://doi.org/10.1016/j.pecs.2014.12.002

    Article  Google Scholar 

  26. 26.

    Starikovskiy, A., Aleksandrov, N.: Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39, 61–110 (2013). https://doi.org/10.1016/j.pecs.2012.05.003

    Article  Google Scholar 

  27. 27.

    Lukhovitski, B.I., Starik, A.M., Titova, N.S.: Activation of chain processes in combustible mixtures by laser excitation of molecular vibrations of reactants. Combust. Explos. Shock Waves 41(4), 386–394 (2005). https://doi.org/10.1007/s10573-005-0047-6

    Article  Google Scholar 

  28. 28.

    Starik, A.M., Lukhovitski, B.I., Naumov, V.V., Titova, N.S.: On combustion enhancement mechanisms in the case of electrical-discharge-excited oxygen molecules. Tech. Phys. 52(10), 1281–1290 (2007). https://doi.org/10.1134/S1063784207100064

    Article  Google Scholar 

  29. 29.

    Starik, A.M., Loukhovitski, B.I., Sharipov, A.S., Titova, N.S.: Intensification of shock-induced combustion by electric-discharge-excited oxygen molecules: numerical study. Combust. Theory Model. 14(5), 653–679 (2010). https://doi.org/10.1080/13647830.2010.499966

    Article  MATH  Google Scholar 

  30. 30.

    Starik, A., Sharipov, A.: Theoretical analysis of reaction kinetics with singlet oxygen molecules. Phys. Chem. Chem. Phys. 13, 16424–16436 (2011). https://doi.org/10.1039/C1CP21269A

    Article  Google Scholar 

  31. 31.

    Colonna, G., Bonelli, F., Pascazio, G.: Impact of fundamental molecular kinetics on macroscopic properties of high-enthalpy flows: the case of hypersonic atmospheric entry. Phys. Rev. Fluids 4, 033404 (2019). https://doi.org/10.1103/PhysRevFluids.4.033404

    Article  Google Scholar 

  32. 32.

    Bonelli, F., Tuttafesta, M., Colonna, G., Cutrone, L., Pascazio, G.: An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster. Comput. Phys. Commun. 219, 178–195 (2017). https://doi.org/10.1016/j.cpc.2017.05.019

    MathSciNet  Article  Google Scholar 

  33. 33.

    Colonna, G., Pietanza, L.D., Capitelli, M.: Recombination-assisted nitrogen dissociation rates under nonequilibrium conditions. J. Thermophys. Heat Transf. 22, 399–406 (2008). https://doi.org/10.2514/1.33505

    Article  Google Scholar 

  34. 34.

    Colonna, G., Armenise, I., Bruno, D., Capitelli, M.: Reduction of state-to-state kinetics to macroscopic models in hypersonic flows. J. Thermophys. Heat Transf. 20, 477–486 (2006). https://doi.org/10.2514/1.18377

    Article  Google Scholar 

  35. 35.

    Guy, A., Bourdon, A., Perrin, M.-Y.: Consistent multi-internal-temperatures models for nonequilibrium nozzle flows. Chem. Phys. 420, 15–24 (2013). https://doi.org/10.1016/j.chemphys.2013.04.018

    Article  Google Scholar 

  36. 36.

    Guy, A., Bourdon, A., Perrin, M.-Y.: Consistent multi-internal-temperature models for vibrational and electronic nonequilibrium in hypersonic nitrogen plasma flows. Phys. Plasmas 22(9), 043507 (2015). https://doi.org/10.1063/1.4917338

    Article  Google Scholar 

  37. 37.

    Da Silva, M.L., Guerra, V., Loureiro, J.: Two-temperature models for nitrogen dissociation. Chem. Phys. 342, 275–287 (2007). https://doi.org/10.1016/j.chemphys.2007.10.010

    Article  Google Scholar 

  38. 38.

    Starik, A.M., Kozlov, V.E., Titova, N.S.: On the influence of singlet oxygen molecules on the speed of flame propagation in methane–air mixture. Combust. Flame 157, 313–327 (2010). https://doi.org/10.1016/j.combustflame.2009.11.008

    Article  Google Scholar 

  39. 39.

    Starik, A.M., Titova, N.S., Sharipov, A.S., Kozlov, V.E.: Syngas oxidation mechanism. Combust. Explos. Shock Waves 46, 491–506 (2010). https://doi.org/10.1007/s10573-010-0065-x

    Article  Google Scholar 

  40. 40.

    Starik, A.M., Titova, N.S., Sharipov, A.S.: Kinetic mechanism of H2–O2 ignition promoted by singlet oxygen O2(a1Δg). In: Roy, G.D., Frolov, S.M. (eds.) Deflagrative and Detonative Combustion, pp. 12–19. Torus Press, Moscow (2010)

    Google Scholar 

  41. 41.

    Starik, A.M., Kozlov, V.E., Titova, N.S.: On the influence of singlet oxygen molecules on characteristics of HCCI combustion: a numerical study. Combust. Theory Model. 17, 579–609 (2013). https://doi.org/10.1080/13647830.2013.783238

    Article  Google Scholar 

  42. 42.

    Starik, A.M., Pelevkin, A.V., Titova, N.S.: Modeling study of the acceleration of ignition in ethane–air and natural gas–air mixtures via photochemical excitation of oxygen molecules. Combust. Flame 176, 81–93 (2017). https://doi.org/10.1016/j.combustflame.2016.10.005

    Article  Google Scholar 

  43. 43.

    Glushko, V.P. (ed.): Thermodynamical Properties of Individual Species. Nauka, Moscow (1978)

    Google Scholar 

  44. 44.

    Furudate, M., Fujita, K., Abe, T.: Coupled rotational-vibrational relaxation of molecular hydrogen at high temperatures. J. Thermophys. Heat Transf. 20(3), 457–464 (2006). https://doi.org/10.2514/1.16323

    Article  Google Scholar 

  45. 45.

    Sharma, S.P.: Rotational relaxation of molecular hydrogen at moderate temperatures. J. Thermophys. Heat Transf. 8(1), 35–39 (1994). https://doi.org/10.2514/3.498

    Article  Google Scholar 

  46. 46.

    Kim, J.G., Kwon, O.J., Park, C.: Master equation study and nonequilibrium chemical reactions for H + H2 and He + H2. J. Thermophys. Heat Transf. 23(3), 443–453 (2009). https://doi.org/10.2514/1.41741

    Article  Google Scholar 

  47. 47.

    Magin, T.E., Panesi, M., Bourdon, A., Jaffe, R.L., Schwenke, D.W.: Coarse-grain model for internal energy excitation and dissociation of molecular nitrogen. Chem. Phys. 398, 90–95 (2012). https://doi.org/10.1016/j.chemphys.2011.10.009

    Article  Google Scholar 

  48. 48.

    Andrienko, D.A., Boyd, I.D.: Master equation study of vibrational and rotational relaxations of oxygen. J. Thermophys. Heat Transf. 30(3), 533–552 (2016). https://doi.org/10.2514/1.t4769

    Article  Google Scholar 

  49. 49.

    Andrienko, D.A., Boyd, I.D.: Thermal relaxation of molecular oxygen in collisions with nitrogen atoms. J. Chem. Phys. 145(1), 014309 (2016). https://doi.org/10.1063/1.4955199

    Article  Google Scholar 

  50. 50.

    Panesi, M., Munafò, A., Magin, T.E., Jaffe, R.L.: Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method. Phys. Rev. E 90, 013009 (2014). https://doi.org/10.1103/PhysRevE.90.013009

    Article  Google Scholar 

  51. 51.

    Torres, E., Magin, T.E.: Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation. J. Chem. Phys. 149, 174106 (2018). https://doi.org/10.1063/1.5030211

    Article  Google Scholar 

  52. 52.

    Colonna, G., Pietanza, L.D., D’Ammando, G.: Self-consistent collisional-radiative model for hydrogen atoms: atom–atom interaction and radiation transport. Chem. Phys. 398, 37–45 (2012). https://doi.org/10.1016/j.chemphys.2011.06.019

    Article  Google Scholar 

  53. 53.

    Celiberto, R., Capitelli, M., Colonna, G., D’Ammando, G., Esposito, F., Janev, R.K., Laporta, V., Laricchiuta, A., Pietanza, L.D., Rutigliano, M., Wadehra, J.M.: Elementary processes and kinetic modeling for hydrogen and helium plasmas. Atoms 5, 18 (2017). https://doi.org/10.3390/atoms5020018

    Article  Google Scholar 

  54. 54.

    Esposito, F., Armenise, I., Capitelli, M.: N–N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem. Phys. 331, 1–8 (2006). https://doi.org/10.1016/j.chemphys.2006.09.035

    Article  Google Scholar 

  55. 55.

    Voelkel, S., Varghese, P.L., Raman, V.: Multitemperature dissociation rate of N2 + N2 → N2 + N+N calculated using selective sampling quasi-classical trajectory analysis. J. Thermophys. Heat Transf. 31(4), 965–975 (2017). https://doi.org/10.2514/1.T5103

    Article  Google Scholar 

  56. 56.

    Esposito, F., Armenise, I., Capitta, G., Capitelli, M.: O–O2 state-to-state vibrational relaxation and dissociation rates based on quasiclassical calculations. Chem. Phys. 351, 91–98 (2008). https://doi.org/10.1016/j.chemphys.2008.04.004

    Article  Google Scholar 

  57. 57.

    Andrienko, D.A., Boyd, I.D.: State-specific dissociation in O2–O2 collisions by quasiclassical trajectory method. Chem. Phys. 491, 74–81 (2017). https://doi.org/10.1016/j.chemphys.2017.05.005

    Article  Google Scholar 

  58. 58.

    Andrienko, D., Boyd, I.D.: Vibrational relaxation and dissociation in O2–O mixtures. 46th AIAA Thermophysics Conference, AIAA Paper 2016-4021 (2016). https://doi.org/10.2514/6.2016-4021

  59. 59.

    Cacciatore, M., Capitelli, M., Billing, G.D.: Vibration-to-translation energy exchanges in H2 colliding with highly vibrationally excited H2 molecules. Chem. Phys. Lett. 157(4), 305–308 (1989). https://doi.org/10.1016/0009-2614(89)87252-5

    Article  Google Scholar 

  60. 60.

    Cacciatore, M., Billing, G.D.: State-to-state vibration–translation and vibration–vibration rate constants in hydrogen–hydrogen and hydrogen deuteride–hydrogen deuteride collisions. J. Phys. Chem. 96(1), 217–223 (1992). https://doi.org/10.1021/j100180a042

    Article  Google Scholar 

  61. 61.

    Esposito, F., Gorse, C., Capitelli, M.: Quasi-classical dynamics calculations and state-selected rate coefficients for H + H2(v, j) → 3H processes: application to the global dissociation rate under thermal conditions. Chem. Phys. Lett. 303, 636–640 (1999). https://doi.org/10.1016/S0009-2614(99)00241-9

    Article  Google Scholar 

  62. 62.

    Bose, D., Candler, G.V.: Thermal rate constants of the N2 + O → NO + N reaction using ab initio 3A″ and 3A′ potential energy surfaces. J. Chem. Phys. 104(8), 2825–2833 (1996). https://doi.org/10.1063/1.471106

    Article  Google Scholar 

  63. 63.

    Esposito, F., Armenise, I.: Reactive, inelastic, and dissociation processes in collisions of atomic oxygen with molecular nitrogen. J. Phys. Chem. A 121(33), 6211–6219 (2017). https://doi.org/10.1021/acs.jpca.7b04442

    Article  Google Scholar 

  64. 64.

    Luo, H., Kulakhmetov, M., Alexeenko, A.: Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations. J. Chem. Phys. 146(7), 074303 (2017). https://doi.org/10.1063/1.4975770

    Article  Google Scholar 

  65. 65.

    Andrienko, D., Boyd, I.D.: State-resolved characterization of nitric oxide formation in shock flows. 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-1233 (2018). https://doi.org/10.2514/6.2018-1233

  66. 66.

    Voelkel, S., Raman, V., Varghese, P.L.: Effect of thermal nonequilibrium on reactions in hydrogen combustion. Shock Waves 26, 539–549 (2016). https://doi.org/10.1007/s00193-016-0645-0

    Article  Google Scholar 

  67. 67.

    Matveyev, A.A., Silakov, V.P.: Kinetic processes in a highly-ionized non-equilibrium hydrogen plasma. Plasma Sources Sci. Technol. 4, 606 (1995). https://doi.org/10.1088/0963-0252/4/4/012

    Article  Google Scholar 

  68. 68.

    Arsentiev, I.V., Loukhovitski, B.I., Starik, A.M.: Application of state-to-state approach in estimation of thermally nonequilibrium reaction rate constants in mode approximation. Chem. Phys. 398, 73–80 (2012). https://doi.org/10.1016/j.chemphys.2011.06.011

    Article  Google Scholar 

  69. 69.

    Kustova, E., Savelev, A., Armenise, I.: State-resolved dissociation and exchange reactions in CO2 flows. J. Phys. Chem. A 123(49), 10529–10542 (2019). https://doi.org/10.1021/acs.jpca.9b08578

    Article  Google Scholar 

  70. 70.

    Kustova, E.V., Savelev, A.S., Lukasheva, A.A.: Refinement of state-resolved models for chemical kinetics using the data of trajectory calculations. Phys. Chem. Kinet. Gas Dyn. 19(3), 1–14 (2018). https://doi.org/10.33257/PhChGD.19.3.767

    Article  Google Scholar 

  71. 71.

    Adamovich, I.V., Macheret, S.O., Rich, W.J., Treanor, C.E.: Vibrational energy transfer rate using force harmonic oscillator model. J. Thermophys. Heat Transf. 12, 57–65 (1998). https://doi.org/10.2514/2.6302

    Article  Google Scholar 

  72. 72.

    Oblapenko, G.P.: Calculation of vibrational relaxation times using a kinetic theory approach. J. Phys. Chem. A 122(50), 9615–9625 (2018). https://doi.org/10.1021/acs.jpca.8b09897

    Article  Google Scholar 

  73. 73.

    Millikan, R.C., White, D.R.: Systematics of vibrational relaxation. J. Chem. Phys. 39, 3209 (1963). https://doi.org/10.1063/1.1734182

    Article  Google Scholar 

  74. 74.

    Brun, R. (ed.): High Temperature Phenomena in Shock Waves. Springer, Berlin (2012)

    Google Scholar 

  75. 75.

    Center, R.E., Newton, J.F.: Vibrational relaxation of N2 by H2O. J. Chem. Phys. 68(8), 3327–3333 (1978). https://doi.org/10.1063/1.436237

    Article  Google Scholar 

  76. 76.

    Landau, L., Teller, E.: On the theory of sound dispersion. Phys. Z. Sowjetunion 10, 34 (1936)

    Google Scholar 

  77. 77.

    Kustova, E., Nagnibeda, E., Oblapenko, G., Savelev, A., Sharafutdinov, I.: Advanced models for vibrational–chemical coupling in multi-temperature flows. Chem. Phys. 464, 1–13 (2016). https://doi.org/10.1016/j.chemphys.2015.10.017

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (Grants 18-31-00140 and 20-38-70014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. N. Kadochnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by D. Zeitoun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadochnikov, I.N., Arsentiev, I.V. Modelling of vibrational nonequilibrium effects on the H2–air mixture ignition under shock wave conditions in the state-to-state and mode approximations. Shock Waves 30, 491–504 (2020). https://doi.org/10.1007/s00193-020-00961-0

Download citation

Keywords

  • State-to-state model
  • Mode model
  • Hydrogen combustion
  • Vibrational relaxation
  • Shock wave
  • Thermal nonequilibrium