Propagation of near-limit gaseous detonations in rough-walled tubes

Abstract

In this study, experiments were carried out to investigate the detonation velocity behavior near limits in rough-walled tubes. The wall roughness was introduced by using different spiral inserts in 76.2-mm-diameter, 50.8-mm-diameter, 38.1-mm-diameter, and 25.4-mm-diameter tubes. Different pre-mixed mixtures, CH4 + 2O2, C2H2 + 2.5O2, C2H2 + 2.5O2 + 70%Ar, and 2H2 + O2 were tested in the experiments. Different spiral wire diameters were used, and the pitch of each spiral was twice of the diameter to keep the same level of roughness in all experiments for each tube. Fiber optics were used to record the detonation time of arrival to deduce the velocity. The normalized velocity V/VCJ and the velocity deficit δ were computed and analyzed to describe the detonation behavior near the limit. The cellular structure near the limit was recorded by the smoked foils.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511754708

    Google Scholar 

  2. 2.

    Gu, L.S., Knystautas, R., Lee, J.H.: Influence of obstacle spacing on the propagation of quasi-detonation. AIAA Prog. Astronaut. Aeronaut. 114, 232–247 (1988). https://doi.org/10.2514/5.9781600865886.0232.0247

    Article  Google Scholar 

  3. 3.

    Ciccarelli, G., Cross, M.: On the propagation mechanism of a detonation wave in a round tube with orifice plates. Shock Waves 26(5), 587–597 (2016). https://doi.org/10.1007/s00193-016-0676-6

    Article  Google Scholar 

  4. 4.

    Ciccarelli, G., Wang, Z., Lu, J., Cross, M.: Effect of orifice plate spacing on detonation propagation. J. Loss Prev. Process Ind. 49, 739–744 (2017). https://doi.org/10.1016/j.jlp.2017.03.014

    Article  Google Scholar 

  5. 5.

    Laffitte, P.: Sur la formation de l’onde explosive. C. R. Acad. Sci. 176, 1392–1394 (1923)

    Google Scholar 

  6. 6.

    Shchelkin, K.I.: Detonation of gases in rough tubes. Zh. Teknich. Fiz. SSSR 17, 613–618 (1947)

    Google Scholar 

  7. 7.

    Guénoche, H.: The detonation and deflagration of gas mixtures. Rev. Inst. Français Pétrole 4, 48–69 (1949)

    Google Scholar 

  8. 8.

    Brochet, C.: Contribution à l’Etude des Détonations Instable dans les Mélanges Gazeux. PhD thesis, University of Poitiers, France (1966)

  9. 9.

    Teodorczyk, A., Lee, J.H.S.: Detonation attenuation by foams and wire meshes lining the walls. Shock Waves 4, 225–236 (1995). https://doi.org/10.1007/BF01414988

    Article  Google Scholar 

  10. 10.

    Teodorczyk, A., Lee, J.H.S., Knystautas, R.: Propagation mechanism of quasi-detonations. Proc. Combust. Inst. 22, 1723–1731 (1988). https://doi.org/10.1016/S0082-0784(89)80185-7

    Article  Google Scholar 

  11. 11.

    Teodorczyk, A., Lee, J.H.S., Knystautas, R.: Photographic study of the structure and propagation mechanisms of quasi-detonations in rough tubes. AIAA Prog. Astronaut. Aeronaut. 133, 223–240 (1991). https://doi.org/10.2514/5.9781600866067.0223.0240

    Article  Google Scholar 

  12. 12.

    Starr, A., Lee, J.H.S., Ng, H.D.: Detonation limits in rough walled tubes. Proc. Combust. Inst. 35(2), 1989–1996 (2015). https://doi.org/10.1016/j.proci.2014.06.130

    Article  Google Scholar 

  13. 13.

    Zhang, B.: The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combust. Flame 169, 333–339 (2016). https://doi.org/10.1016/j.combustflame.2016.05.003

    Article  Google Scholar 

  14. 14.

    Lee, J.H.S., Jesuthasan, A., Ng, H.D.: Near limit behavior of the detonation velocity. Proc. Combust. Inst. 34(2), 1957–1963 (2013). https://doi.org/10.1016/j.proci.2012.05.036

    Article  Google Scholar 

  15. 15.

    Gao, Y., Zhang, B., Ng, H.D., Lee, J.H.S.: An experimental investigation of detonation limits in hydrogen–oxygen–argon mixtures. Int. J. Hydrogen Energy 41(14), 6076–6083 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.130

    Article  Google Scholar 

  16. 16.

    Gao, Y., Ng, H.D., Lee, J.H.S.: Minimum tube diameters for steady propagation of gaseous detonations. Shock Waves 24(4), 447–454 (2014). https://doi.org/10.1007/s00193-014-0505-8

    Article  Google Scholar 

  17. 17.

    Zhang, B., Shen, X., Pang, L., Gao, Y.: Detonation velocity deficits of H2/O2/Ar mixture in round tube and annular channels. Int. J. Hydrogen Energy 40(43), 15078–15087 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.036

    Article  Google Scholar 

  18. 18.

    Manzhalei, V.I.: Detonation regimes of gases in capillaries. Combust. Expl. Shock Waves 28, 296–302 (1992). https://doi.org/10.1007/BF00749647

    Article  Google Scholar 

  19. 19.

    Camargo, A., Ng, H.D., Chao, J., Lee, J.H.S.: Propagation of near-limit gaseous detonations in small diameter tubes. Shock Waves 20(6), 499–508 (2010). https://doi.org/10.1007/s00193-010-0253-3

    Article  MATH  Google Scholar 

  20. 20.

    Manson, N., Brochet, C., Brossard, J., Pujol, Y.: Vibratory phenomena and instability of self-sustained detonations in gases. Proc. Combust. Inst. 9, 461–469 (1963). https://doi.org/10.1016/S0082-0784(63)80055-7

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Sciences & Engineering Research Council of Canada (NSERC). T. Ren is funded by the International Graduate Exchange Program of Beijing Institute of Technology. Y. Yan is grateful for the financial support by the China Scholarship Council (CSC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. H. S. Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by G. Ciccarelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, T., Yan, Y., Zhao, H. et al. Propagation of near-limit gaseous detonations in rough-walled tubes. Shock Waves (2020). https://doi.org/10.1007/s00193-020-00957-w

Download citation

Keywords

  • Detonation limit
  • Wall roughness
  • Spring inserts
  • Velocity deficit
  • Velocity fluctuation
  • Smoked foils