Skip to main content
Log in

Continuous detonation of a hydrogen–oxygen gas mixture in a 100-mm plane-radial combustor with exhaustion toward the periphery

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Regimes of continuous spin detonation and continuous multifront detonation in a hydrogen–oxygen mixture are obtained in a plane-radial combustor with an inner diameter of 100 mm and exhaustion toward the periphery. The fuel-lean limits of detonation in terms of the specific flow rate of the mixture are determined. For continuous spin detonation, transverse detonation waves and the flow in their vicinity in the combustor plane are reconstructed. The detonation wave is found to be significantly curved because of the increase in the tangential component of the velocity along the combustor radius. It is demonstrated that the scale effect is manifested only in the number of rotating waves. However, their velocity increases with increasing the combustor size. The velocity deficit of continuous detonation is 20–40% as compared to the velocity of the ideal Chapman–Jouguet detonation. (The smaller value corresponds to the fuel-lean mixture.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Voitsekhovskii, B.V.: Steady detonation. Dokl. Akad. Nauk SSSR 129, 1254–1256 (1959)

    Google Scholar 

  2. Bykovskii, F.A., Vasil’ev, A.A., Vedernikov, E.F., Mitrofanov, V.V.: Explosive combustion of a gas mixture in radial annular chambers. Combust. Explos. Shock Waves 30, 510–516 (1994). https://doi.org/10.1007/BF00790158

    Article  Google Scholar 

  3. Bykovskii, F.A., Vedernikov, E.F.: Self-sustaining pulsating detonation of gas-mixture flow. Combust. Explos. Shock Waves 32, 442–448 (1996). https://doi.org/10.1007/BF01998496

    Article  Google Scholar 

  4. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F., Samsonov, A.N., Misovets, O.V.: Continuous detonation of a hydrogen–oxygen mixture in a plane-radial combustor with exhaustion toward the periphery. Proceedings of XXXI All-Russia Conference “Siberian Thermophysical Workshop,” Nov 17–19, 2014, Novosibirsk, Russia, pp. 173–178

  5. Tobita, A., Fujiwara,T., Wolanski, P.: Detonation engine and flying object provided therewith. U.S. Patent 7,784,267, issued August 31, 2010

  6. Higashi, J., Ishiyama, C., Nakagami, S., et al.: Experimental study of disk-shaped rotating detonation turbine engine. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-1286 (2017). https://doi.org/10.2514/6.2017-1286

  7. Bykovskii, F.A., Zhdan, S.A.: Continuous spin detonation. Izd. SO RAN, Novosibirsk (2013)

    Google Scholar 

  8. Bykovskii, F.A., Vedernikov, E.F., Polozov, S.V., Golubev, Yu.V.: Initiation of detonation in flows of fuel-air mixtures. Combust. Explos. Shock Waves 43, 345–354 (2007). https://doi.org/10.1007/s10573-007-0048-8

    Article  Google Scholar 

  9. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous detonation of methane/hydrogen–air mixtures in an annular cylindrical combustor. Combust. Explos. Shock Waves 54, 472–481 (2018). https://doi.org/10.1134/s0010508218040111

    Article  Google Scholar 

  10. Voitsekhovski, B.V., Mitrofanov, V.V., Topchiyan, M.E.: Detonation front structure in gases. Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963)

    Google Scholar 

  11. Lewis, B., Elbe, G.: Combustion, Flame, and Explosions of Gases. Elsevier, New York (1961). https://doi.org/10.1016/C2009-0-21751-X

    Book  Google Scholar 

  12. Nikolaev, YuA, Topchiyan, M.E.: Analysis of equilibrium flows in detonation waves in gases. Combust. Explos. Shock Waves 13, 327–337 (1977). https://doi.org/10.1007/BF00740309

    Article  Google Scholar 

  13. Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., Ikkoh, F.: Experimental study of the structure of forward-tilting rotating detonation waves and highly maintained combustion chamber pressure in disk-shaped combustor. Proc. Combust. Inst. 36, 2673–2680 (2017). https://doi.org/10.1016/j.proci.2016.07.097

    Article  Google Scholar 

  14. Bykovskii, F.A., Vedernikov, E.F.: Continuous detonation combustion of an annular gas-mixture layer. Combust. Explos. Shock Waves 32, 489–491 (1996). https://doi.org/10.1007/BF01998570

    Article  Google Scholar 

  15. Vasil’ev, A.A., Mitrofanov, V.V., Topchiyan, M.E.: Detonation waves in gases. Combust. Explos. Shock Waves 23, 605–623 (1987). https://doi.org/10.1007/BF00756541

    Article  Google Scholar 

  16. Mitrofanov, V.V.: Certain critical phenomena in detonation associated with momentum losses. Combust. Explos. Shock Waves 19, 531–536 (1983). https://doi.org/10.1007/BF00783670

    Article  Google Scholar 

  17. Deich, M.E.: Technical Gas Dynamics. Energiya, Moscow (1974)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 18-41-540001r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Samsonov.

Additional information

Communicated by F. Lu and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F. et al. Continuous detonation of a hydrogen–oxygen gas mixture in a 100-mm plane-radial combustor with exhaustion toward the periphery. Shock Waves 30, 235–243 (2020). https://doi.org/10.1007/s00193-019-00919-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00919-x

Keywords

Navigation