Skip to main content
Log in

On the location of the laser energy deposition region in wave drag reduction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A two-dimensional numerical simulation is carried out to determine the optimum location of the concentrated laser energy deposition region for maximum wave drag reduction of a blunt body. A 25.4-mm-diameter semicircle, Mach 3.45, and 50 mJ pulse energy are chosen as the representative blunt body, free-stream Mach number, and magnitude of the deposited laser energy, respectively. The location of the energy deposition region is varied discretely from 21 to 50 mm upstream of the center of the semicircle along its axis of symmetry. The lower limit of the distance is just upstream of the blunt body bow shock along the axis of symmetry. It is found that for the assumed conditions, the maximum wave drag reduction happens at the lower limit of the distances. A time-resolved analysis of the interaction between the laser-induced blast wave and the bow shock is carried out to arrive at the conclusions. It is observed that the blast wave reflects as an expansion wave from the bow shock for the 21 mm case, whereas the reflected wave is a shock wave for all other cases. The time history of the static pressure at the blunt body nose and wave drag per unit depth on the blunt body are also provided for the above locations of the energy deposition region to justify the inferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bogdonoff, S.M., Vas, I.E.: Preliminary investigations of spiked bodies at hypersonic speeds. Wright Air Dev. Center TN 58-7 (AD 142 280), March (1953)

  2. Crowford, D.H.: Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8. NASA TN-D118, Dec. (1959)

  3. Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T., Kubota, H.: Thermal protection and drag reduction with use of spike in hypersonic flow. 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, AIAA Paper 2001-1828 (2001). https://doi.org/10.2514/6.2001-1828

  4. Gnemmi, P., Srulijes, J., Roussel, K., Runne, K.: Flowfield around spike-tipped bodies for high attack angles at mach 4.5. J. Spacecr. Rockets 40(5), 622–631 (2003). https://doi.org/10.2514/2.6910

    Article  Google Scholar 

  5. Menezes, V., Saravanan, S., Jagadeesh, G., Reddy, K.P.J.: Experimental investigations of hypersonic flow over highly blunted cones with aerospikes. AIAA J. 41(10), 1955–1966 (2003). https://doi.org/10.2514/2.1885

    Article  Google Scholar 

  6. Schuelein, E.: Wave drag reduction approach for blunt bodies at high angles of attack: Proof-of-concept experiments. 4th Flow Control Conference, Seattle, Washington, AIAA Paper 2008-4000 (2008). https://doi.org/10.2514/6.2008-4000

  7. Chernyi, G.: Some recent results in aerodynamic applications of flows with localized energy addition. 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, AIAA Paper 99-4819 (1999). https://doi.org/10.2514/6.1999-4819

  8. Bityurin, V., Klimov, A., Leonov, S., Bocharov, A., Lineberry, J.: Assessment of a concept of advanced flow/flight control for hypersonic flights in atmosphere. 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, AIAA Paper 99-4820 (1999). https://doi.org/10.2514/6.1999-4820

  9. Knight, D., Kuchinskiy, V., Kuranov, A., Sheikin, E.: Survey of aerodynamic flow control at high speed by energy deposition. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2003-0525 (2003). https://doi.org/10.2514/6.2003-525

  10. Kandala, R., Candler, G.V.: Numerical studies of laser-induced energy deposition for supersonic flow control. AIAA J. 42(11), 2266–2275 (2004). https://doi.org/10.2514/1.6817

    Article  Google Scholar 

  11. Fomin, V.M., Tretyakov, P.K., Taran, J.P.: Flow control using various plasma and aerodynamic approaches (Short Review). Aerosp. Sci. Technol. 8(5), 411–421 (2004). https://doi.org/10.1016/j.ast.2004.01.005

    Article  Google Scholar 

  12. Bletzinger, P., Ganguly, B.N., Garscadden, A.: Plasmas in high speed aerodynamics. J. Phys. D Appl. Phys. 38(4), R33 (2005). https://doi.org/10.1088/0022-3727/38/4/r01

    Article  Google Scholar 

  13. Zheltovodov, A.A., Pimonov, E.A., Knight, D.D.: Energy deposition influence on supersonic flow over axisymmetric bodies. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2007-1230 (2007). https://doi.org/10.2514/6.2007-1230

  14. Schülein, E., Zheltovodov, A.A., Loginov, M.S., Pimonov, E.A.: Experimental and numerical study of shock wave transformation by laser-induced energy deposition. International Conference on Methods of Aerophysical Research, ICMAR (2008)

  15. Ogino, Y., Ohnishi, N., Taguchi, S., Sawada, K.: Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition. Phys. Fluids 21, 066102 (2009). https://doi.org/10.1063/1.3147932

    Article  MATH  Google Scholar 

  16. Golbabaei-Asl, M., Knight, D.D.: Numerical characterization of high-temperature filament interaction with blunt cylinder at Mach 3. Shock Waves 24, 123–138 (2014). https://doi.org/10.1007/s00193-013-0471-6

    Article  Google Scholar 

  17. Azarova, O.A., Knight, D.D.: Numerical prediction of dynamics of interaction of laser discharge plasma with a hemisphere-cylinder in a supersonic flow. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2015-0582 (2015). https://doi.org/10.2514/6.2015-0582

  18. Joarder, R., Padhi, U.P., Singh, A.P., Tummalapalli, H.: Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body. Int. J. Heat Mass Transf. 105, 723–740 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.025

    Article  Google Scholar 

  19. Mortazavi, M., Knight, D., Azarova, O., Shi, J., Yan, H.: Numerical simulation of energy deposition in a supersonic flow past a hemisphere. 52nd Aerospace Sciences Meeting, National Harbor, Maryland, AIAA Paper 2014-0944 (2014). https://doi.org/10.2514/6.2014-0944

  20. Mortazavi, M., Knight, D.: Numerical simulation of energy deposition in a viscous supersonic flow past a hemisphere. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA Paper 2015-0583 (2015). https://doi.org/10.2514/6.2015-0583

  21. Joarder, R.: On the mechanism of wave drag reduction by concentrated laser energy deposition in supersonic flows over a blunt body. Shock Waves (2018). https://doi.org/10.1007/s00193-018-0868-3

    Google Scholar 

  22. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor & Francis, Milton Park (1997). https://doi.org/10.1201/b12884

    MATH  Google Scholar 

  23. Shuen, J.-S., Liou, M.-S., van Leer, B.: Inviscid flux-splitting algorithm for real gases with non-equilibrium chemistry. J. Comput. Phys. 90(2), 371–395 (1990). https://doi.org/10.1016/0021-9991(90)90172-W

    Article  MATH  Google Scholar 

  24. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Peyret, R., Taylor, D.T.: Computational Methods for Fluid Flow. Springer, Berlin (1983). https://doi.org/10.1007/978-3-642-85952-6

    Book  MATH  Google Scholar 

  26. Van Leer, B.: Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979). https://doi.org/10.1006/jcph.1997.5704

    Article  MATH  Google Scholar 

  27. Van Albada, G.D., Van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84 (1982). https://doi.org/10.1007/978-3-642-60543-7_6

    MATH  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Dors, I., Parigger, C., Lewis, J.: Fluid dynamic effects following laser-induced optical breakdown. 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, AlAA Paper 2000-0717 (2000). https://doi.org/10.2514/6.2000-717

  30. Joarder, R., Gebel, G.C., Mosbach, T.: Two-dimensional numerical simulation of a decaying laser spark in air with radiation loss. Int. J. Heat Mass Transf. 63, 284–300 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.072

    Article  Google Scholar 

  31. Haselbacher, A.: On impedance in shock-refraction problems. Shock Waves 22, 381–384 (2012). https://doi.org/10.1007/s00193-012-0377-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Joarder.

Additional information

Communicated by A. Sasoh and A. Higgins.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joarder, R. On the location of the laser energy deposition region in wave drag reduction. Shock Waves 29, 929–940 (2019). https://doi.org/10.1007/s00193-019-00901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00901-7

Keywords

Navigation