Skip to main content
Log in

Comparison of the AUSM+-up and other advection schemes for turbomachinery applications

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this paper, the AUSM+-up scheme is compared to other numerical flux schemes in the framework of a RANS/URANS code for turbomachinery applications. The considered advection schemes include central discretizations with artificial dissipation and the Roe upwind scheme. The comparison is carried out by studying a low-aspect-ratio turbine cascade over a wide range of expansion ratios that encompasses almost incompressible up to supersonic flow conditions. It is found that the dissipation scaling associated with the AUSM+-up scheme was effective over the whole range of analysed flow conditions. A detailed assessment with the aid of the available measurements will be exploited to show how the AUSM+-up is capable of a detailed and faithful reproduction of secondary flow features, with accuracy comparable to that of the Roe scheme and superior to that of central schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gourdain, N., Sicot, F., Duchaine, F., Gicquel, L.: Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035. Philos. Trans. A Math. Phys. Eng. Sci. 372(2022), 20130323 (2014). https://doi.org/10.1098/rsta.2013.0323

    Article  Google Scholar 

  2. Cui, J., Nagabhushana, R., Tucker, P.G.: Numerical investigation of secondary flows in a high-lift low pressure turbine. Int. J. Heat Fluid Flow 63, 149–157 (2017). https://doi.org/10.1016/j.ijheatfluidflow.2016.05.018

    Article  Google Scholar 

  3. Pichler, R., Zhao, Y., Sandberg, R.D., Michelassi, V., Pacciani, R., Marconcini, M., Arnone, A.: LES and RANS analysis of the end-wall flow in a linear LPT cascade with variable inlet conditions, part I: flow and secondary vorticity fields. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery, p. V02BT41A020 (2018). https://doi.org/10.1115/GT2018-76233

  4. Marconcini, M., Pacciani, R., Arnone, A., Michelassi, V., Pichler, R., Zhao, Y., Sandberg, R.: LES and RANS analysis of the end-wall flow in a linear LPT cascade: part II - loss generation. J. Turbomach. (2018). https://doi.org/10.1115/1.4042208

  5. Weatheritt, J., Pichler, R., Sandberg, R.D., Laskowski, G., Michelassi, V.: Machine learning for turbulence model development using a high-fidelity HPT cascade simulation. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery, p. V02BT41A015 (2017). https://doi.org/10.1115/GT2017-63497

  6. Akolekar, H.D., Weatheritt, J., Sandberg, R.D., Hutchins, N., Laskowski, G., Michelassi, V.: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low pressure turbines. J. Turbomach. (2018). https://doi.org/10.1115/1.4041753

  7. Chima, R.V., Liou, M.-S.: Comparison of the \(\text{AUSM}^{+}\) and H-CUSP schemes for turbomachinery applications. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4120 (2003). https://doi.org/10.2514/6.2003-4120

  8. Liou, M.-S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  9. Liou, M.-S.: A sequel to AUSM: \(\text{ AUSM }^+\). J. Comput. Phys. 129, 364–382 (1996). https://doi.org/10.1006/jcph.1996.0256

    Article  MathSciNet  MATH  Google Scholar 

  10. Edwards, J.R., Franklin, R.K., Liou, M.-S.: Low-diffusion flux-splitting methods for real fluid flows at all speeds. AIAA J. 38, 1624–1633 (2000). https://doi.org/10.2514/2.1145

    Article  Google Scholar 

  11. Liou, M.-S.: Ten years in the making—AUSM-family. 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, AIAA Paper 2001-2521 (2001). https://doi.org/10.2514/6.2001-2521

  12. Chang, C.-H., Liou, M.-S.: A new approach to the simulation of compressible multifluid flows with \(\text{ AUSM }^{+}\) scheme. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4107 (2003). https://doi.org/10.2514/6.2003-4107

  13. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Liou, M.-S.: A sequel to AUSM, part II: \(\text{ AUSM }^+\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  15. Perdichizzi, A.: Mach number effects on secondary flow development downstream of a turbine cascade. J. Turbomach. 112(4), 643–651 (1990). https://doi.org/10.1115/1.2927705

    Article  Google Scholar 

  16. Arnone, A.: Viscous analysis of three-dimensional rotor flow using a multigrid method. J. Turbomach. 116(3), 435–445 (1994). https://doi.org/10.1115/1.2929430

    Article  Google Scholar 

  17. Arnone, A., Liou, M.-S., Povinelli, L.A.: Multigrid calculation of three-dimensional viscous cascade flows. J. Propuls. Power 9(4), 605–614 (1993). https://doi.org/10.2514/3.23664

    Article  Google Scholar 

  18. Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Ind. Inc., La Cañada (1998)

    Google Scholar 

  19. Arnone, A., Liou, M.-S., Povinelli, L.A.: Navier–Stokes solution of transonic cascade flow using non-periodic C-type grids. J. Propuls. Power 8(2), 410–417 (1992). https://doi.org/10.2514/3.23493

    Article  Google Scholar 

  20. Pacciani, R., Marconcini, M., Arnone, A., Bertini, F.: An assessment of the laminar kinetic energy concept for the prediction of high-lift, low-Reynolds number cascade flows. Proc. Inst. Mech. Eng. Part A J. Power Energy 225(7), 995–1003 (2011). https://doi.org/10.1177/0957650911412444

    Article  Google Scholar 

  21. Marconcini, M., Rubechini, F., Arnone, A., Scotti Del Greco, A., Biagi, R.: Aerodynamic investigation of a high pressure ratio turbo-expander for organic Rankine cycle applications. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 8: Turbomachinery, pp. 847–856 (2012). https://doi.org/10.1115/GT2012-69409

  22. Pacciani, R., Rubechini, F., Arnone, A., Lutum, E.: Calculation of steady and periodic unsteady blade surface heat transfer in separated transitional flow. J. Turbomach. 134(6), 061037 (2012). https://doi.org/10.1115/1.4006312

    Article  Google Scholar 

  23. Giovannini, M., Marconcini, M., Arnone, A., Bertini, F.: Evaluation of unsteady computational fluid dynamics models applied to the analysis of a transonic high-pressure turbine stage. Proc. Inst. Mech. Eng. A J. Power Energy 228(7), 813–824 (2014). https://doi.org/10.1177/0957650914536170

    Article  Google Scholar 

  24. Schmitt, S., Eulitz, F., Wallscheid, L., Arnone, A., Marconcini, M.: Evaluation of unsteady CFD methods by their application to a transonic propfan stage. ASME Turbo Expo 2001: Power for Land, Sea, and Air, vol. 1, p. V001T03A014 (2001). https://doi.org/10.1115/2001-GT-0310

  25. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. 4th Fluid and Plasma Dynamics Conference, Palo Alto, CA, AIAA Paper 1981-1259 (1981). https://doi.org/10.2514/6.1981-1259

  26. Martinelli, L., Jameson, A.: Validation of a multigrid method for Reynolds averaged equations. 26th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1988-414 (1988). https://doi.org/10.2514/6.1988-414

  27. Swanson, R.C., Turkel, E.: Artificial dissipation and central difference schemes for the Euler and Navier–Stokes equations. 8th Computational Fluid Dynamics Conference, Honolulu, HI, AIAA Paper 1987-1107 (1987). https://doi.org/10.2514/6.1987-1107

  28. Swanson, R.C., Turkel, E.: On central-difference and upwind schemes. J. Comput. Phys. 101, 292–306 (1992). https://doi.org/10.1016/0021-9991(92)90007-L

    Article  MathSciNet  MATH  Google Scholar 

  29. Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. 31st Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1993-880 (1993). https://doi.org/10.2514/6.1993-880

Download references

Acknowledgements

The third author is particularly indebted to Meng-Sing Liou for the long-term collaboration, the support, and the guidance Meng-Sing Liou gave him in the early stages of his academic career, when he was a visiting researcher at NASA Glenn Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pacciani.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacciani, R., Marconcini, M. & Arnone, A. Comparison of the AUSM+-up and other advection schemes for turbomachinery applications. Shock Waves 29, 705–716 (2019). https://doi.org/10.1007/s00193-018-0883-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0883-4

Keywords

Navigation