Abstract
In this paper, the AUSM+-up scheme is compared to other numerical flux schemes in the framework of a RANS/URANS code for turbomachinery applications. The considered advection schemes include central discretizations with artificial dissipation and the Roe upwind scheme. The comparison is carried out by studying a low-aspect-ratio turbine cascade over a wide range of expansion ratios that encompasses almost incompressible up to supersonic flow conditions. It is found that the dissipation scaling associated with the AUSM+-up scheme was effective over the whole range of analysed flow conditions. A detailed assessment with the aid of the available measurements will be exploited to show how the AUSM+-up is capable of a detailed and faithful reproduction of secondary flow features, with accuracy comparable to that of the Roe scheme and superior to that of central schemes.
Similar content being viewed by others
References
Gourdain, N., Sicot, F., Duchaine, F., Gicquel, L.: Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035. Philos. Trans. A Math. Phys. Eng. Sci. 372(2022), 20130323 (2014). https://doi.org/10.1098/rsta.2013.0323
Cui, J., Nagabhushana, R., Tucker, P.G.: Numerical investigation of secondary flows in a high-lift low pressure turbine. Int. J. Heat Fluid Flow 63, 149–157 (2017). https://doi.org/10.1016/j.ijheatfluidflow.2016.05.018
Pichler, R., Zhao, Y., Sandberg, R.D., Michelassi, V., Pacciani, R., Marconcini, M., Arnone, A.: LES and RANS analysis of the end-wall flow in a linear LPT cascade with variable inlet conditions, part I: flow and secondary vorticity fields. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery, p. V02BT41A020 (2018). https://doi.org/10.1115/GT2018-76233
Marconcini, M., Pacciani, R., Arnone, A., Michelassi, V., Pichler, R., Zhao, Y., Sandberg, R.: LES and RANS analysis of the end-wall flow in a linear LPT cascade: part II - loss generation. J. Turbomach. (2018). https://doi.org/10.1115/1.4042208
Weatheritt, J., Pichler, R., Sandberg, R.D., Laskowski, G., Michelassi, V.: Machine learning for turbulence model development using a high-fidelity HPT cascade simulation. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery, p. V02BT41A015 (2017). https://doi.org/10.1115/GT2017-63497
Akolekar, H.D., Weatheritt, J., Sandberg, R.D., Hutchins, N., Laskowski, G., Michelassi, V.: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low pressure turbines. J. Turbomach. (2018). https://doi.org/10.1115/1.4041753
Chima, R.V., Liou, M.-S.: Comparison of the \(\text{AUSM}^{+}\) and H-CUSP schemes for turbomachinery applications. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4120 (2003). https://doi.org/10.2514/6.2003-4120
Liou, M.-S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122
Liou, M.-S.: A sequel to AUSM: \(\text{ AUSM }^+\). J. Comput. Phys. 129, 364–382 (1996). https://doi.org/10.1006/jcph.1996.0256
Edwards, J.R., Franklin, R.K., Liou, M.-S.: Low-diffusion flux-splitting methods for real fluid flows at all speeds. AIAA J. 38, 1624–1633 (2000). https://doi.org/10.2514/2.1145
Liou, M.-S.: Ten years in the making—AUSM-family. 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, AIAA Paper 2001-2521 (2001). https://doi.org/10.2514/6.2001-2521
Chang, C.-H., Liou, M.-S.: A new approach to the simulation of compressible multifluid flows with \(\text{ AUSM }^{+}\) scheme. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4107 (2003). https://doi.org/10.2514/6.2003-4107
Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5
Liou, M.-S.: A sequel to AUSM, part II: \(\text{ AUSM }^+\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020
Perdichizzi, A.: Mach number effects on secondary flow development downstream of a turbine cascade. J. Turbomach. 112(4), 643–651 (1990). https://doi.org/10.1115/1.2927705
Arnone, A.: Viscous analysis of three-dimensional rotor flow using a multigrid method. J. Turbomach. 116(3), 435–445 (1994). https://doi.org/10.1115/1.2929430
Arnone, A., Liou, M.-S., Povinelli, L.A.: Multigrid calculation of three-dimensional viscous cascade flows. J. Propuls. Power 9(4), 605–614 (1993). https://doi.org/10.2514/3.23664
Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Ind. Inc., La Cañada (1998)
Arnone, A., Liou, M.-S., Povinelli, L.A.: Navier–Stokes solution of transonic cascade flow using non-periodic C-type grids. J. Propuls. Power 8(2), 410–417 (1992). https://doi.org/10.2514/3.23493
Pacciani, R., Marconcini, M., Arnone, A., Bertini, F.: An assessment of the laminar kinetic energy concept for the prediction of high-lift, low-Reynolds number cascade flows. Proc. Inst. Mech. Eng. Part A J. Power Energy 225(7), 995–1003 (2011). https://doi.org/10.1177/0957650911412444
Marconcini, M., Rubechini, F., Arnone, A., Scotti Del Greco, A., Biagi, R.: Aerodynamic investigation of a high pressure ratio turbo-expander for organic Rankine cycle applications. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 8: Turbomachinery, pp. 847–856 (2012). https://doi.org/10.1115/GT2012-69409
Pacciani, R., Rubechini, F., Arnone, A., Lutum, E.: Calculation of steady and periodic unsteady blade surface heat transfer in separated transitional flow. J. Turbomach. 134(6), 061037 (2012). https://doi.org/10.1115/1.4006312
Giovannini, M., Marconcini, M., Arnone, A., Bertini, F.: Evaluation of unsteady computational fluid dynamics models applied to the analysis of a transonic high-pressure turbine stage. Proc. Inst. Mech. Eng. A J. Power Energy 228(7), 813–824 (2014). https://doi.org/10.1177/0957650914536170
Schmitt, S., Eulitz, F., Wallscheid, L., Arnone, A., Marconcini, M.: Evaluation of unsteady CFD methods by their application to a transonic propfan stage. ASME Turbo Expo 2001: Power for Land, Sea, and Air, vol. 1, p. V001T03A014 (2001). https://doi.org/10.1115/2001-GT-0310
Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. 4th Fluid and Plasma Dynamics Conference, Palo Alto, CA, AIAA Paper 1981-1259 (1981). https://doi.org/10.2514/6.1981-1259
Martinelli, L., Jameson, A.: Validation of a multigrid method for Reynolds averaged equations. 26th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1988-414 (1988). https://doi.org/10.2514/6.1988-414
Swanson, R.C., Turkel, E.: Artificial dissipation and central difference schemes for the Euler and Navier–Stokes equations. 8th Computational Fluid Dynamics Conference, Honolulu, HI, AIAA Paper 1987-1107 (1987). https://doi.org/10.2514/6.1987-1107
Swanson, R.C., Turkel, E.: On central-difference and upwind schemes. J. Comput. Phys. 101, 292–306 (1992). https://doi.org/10.1016/0021-9991(92)90007-L
Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. 31st Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1993-880 (1993). https://doi.org/10.2514/6.1993-880
Acknowledgements
The third author is particularly indebted to Meng-Sing Liou for the long-term collaboration, the support, and the guidance Meng-Sing Liou gave him in the early stages of his academic career, when he was a visiting researcher at NASA Glenn Research Center.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C.-H. Chang.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pacciani, R., Marconcini, M. & Arnone, A. Comparison of the AUSM+-up and other advection schemes for turbomachinery applications. Shock Waves 29, 705–716 (2019). https://doi.org/10.1007/s00193-018-0883-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00193-018-0883-4