Skip to main content
Log in

On the mechanism of wave drag reduction by concentrated laser energy deposition in supersonic flows over a blunt body

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Two-dimensional numerical simulations are carried out to explain the possible mechanism of wave drag reduction by concentrated laser energy deposition on the stagnation streamline of a steady supersonic flowfield over a semicircular body. The simulations essentially involve the solution of the Navier–Stokes equations augmented by species conservation equations. By assuming that the thermochemical equilibrium is reached immediately after the cessation of the laser pulse, the temperature and species concentrations of the energy deposition zone are calculated by a Helmholtz free energy minimization procedure. It is found that, after cessation of the laser pulse, the energy deposition zone transforms itself into a radially expanding blast wave and a hot core region which are convected downstream by the supersonic flow external to it. Subsequently, the blast wave interacts with the bow shock ahead of the semicircular body. Upon interaction, part of the blast wave is transmitted, and the rest is reflected as a weak shock wave. The low-pressure region behind the transmitted blast wave is found to be the primary reason for the reduction of the wave drag on the body. A detailed analysis is carried out on the distribution of pressure, temperature, species concentrations, and velocity at various time instants and spatial locations to arrive at the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bogdonoff, S.M., Vas, I.E.: Preliminary investigations of spiked bodies at hypersonic speeds. Wright Air Dev. Center TN 58-7 (AD 142 280), March (1953)

  2. Crowford, D.H.: Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8. NASA TN-D118 (1959)

  3. Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T., Kubota, H.: Thermal protection and drag reduction with use of spike in hypersonic flow. 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, AIAA Paper 2001-1828 (2001). https://doi.org/10.2514/6.2001-1828

  4. Gnemmi, P., Srulijes, J., Roussel, K., Runne, K.: Flowfield around spike-tipped bodies for high attack angles at Mach 4.5. J. Spacecr. Rockets 40(5), 622–631 (2003). https://doi.org/10.2514/2.6910

    Article  Google Scholar 

  5. Menezes, V., Saravanan, S., Jagadeesh, G., Reddy, K.P.J.: Experimental investigations of hypersonic flow over highly blunted cones with aerospikes. AIAA J. 41(10), 1955–1966 (2003). https://doi.org/10.2514/2.1885

    Article  Google Scholar 

  6. Georgievskii, P.Y., Levin, V.A.: Supersound body bypass with external resources of heat release. Pis’ma Zhurn. Tekhn. Fiz. 14(8), 684–687 (1988). (in Russian)

    Google Scholar 

  7. Georgievskii, P.Y., Levin, V.A.: Unsteady interaction of a sphere with atmospheric temperature inhomogeneity at supersonic speed. Fluid Dyn. 28(4), 568–574 (1993). https://doi.org/10.1007/BF01342694

    Article  Google Scholar 

  8. Schülein, E.: Simplified model for flow-heating effect on wave drag and its validation. AIAA J. 54(3), 1030–1039 (2016). https://doi.org/10.2514/1.J054604

    Article  Google Scholar 

  9. Ohnishi, N., Tate, M., Ogino, Y.: Computational study of shock wave control by pulse energy deposition. Shock Waves 22(6), 521–531 (2012). https://doi.org/10.1007/s00193-012-0407-6

    Article  Google Scholar 

  10. Schuelein, E.: Wave drag reduction approach for blunt bodies at high angles of attack: Proof-of-concept experiments. 4th Flow Control Conference, Seattle, Washington, AIAA Paper 2008-4000 (2008). https://doi.org/10.2514/6.2008-4000

  11. Chernyi, G.G.: Some recent results in aerodynamic applications of flows with localized energy addition. 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, U.S.A., AIAA Paper 99-4819 (1999). https://doi.org/10.2514/6.1999-4819

  12. Bityurin, V., Klimov, A., Leonov, S.: Assessment of a concept of advanced flow/flight control for hypersonic flights in atmosphere. 9th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 99-4820 (1999). https://doi.org/10.2514/6.1999-4820

  13. Knight, D., Kuchinskiy, V., Kuranov, A., Sheikin, E., Survey of aerodynamic flow control at high speed by energy deposition. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2003-0525 (2003). https://doi.org/10.2514/6.2003-525

  14. Kandala, R., Candler, G.V.: Numerical studies of laser-induced energy deposition for supersonic flow control. AIAA J. 42(11), 2266–2275 (2004). https://doi.org/10.2514/1.6817

    Article  Google Scholar 

  15. Fomin, V.M., Tretyakov, P.K., Taran, J.P.: Flow control using various plasma and aerodynamic approaches (short review). Aerosp. Sci. Technol. 8(5), 411–421 (2004). https://doi.org/10.1016/j.ast.2004.01.005

    Article  Google Scholar 

  16. Bletzinger, P., Ganguly, B.N., Van Wie, D., Garscadden, A.: Plasmas in high speed aerodynamics. J. Phys. D Appl. Phys. 38(4), R33–R57 (2005). https://doi.org/10.1088/0022-3727/38/4/r01

    Article  Google Scholar 

  17. Zheltovodov, A.A., Pimonov, E.A., Knight, D.D.: Energy deposition influence on supersonic flow over axisymmetric bodies. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2007-1230 (2007). https://doi.org/10.2514/6.2007-1230

  18. Schülein, E., Zheltovodov, A.A., Loginov, M.S., Pimonov, E.A.: Experimental and numerical study of shock wave transformation by laser-induced energy deposition. International Conference on Methods of Aerophysical Research, ICMAR (2008)

  19. Ogino, Y., Ohnishi, N., Taguchi, S., Sawada, K.: Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition. Phys. Fluids 21, 066102 (2009). https://doi.org/10.1063/1.3147932

    Article  MATH  Google Scholar 

  20. Golbabaei-Asl, M., Knight, D.D.: Numerical characterization of high-temperature filament interaction with blunt cylinder at Mach 3. Shock Waves 24, 123–138 (2014). https://doi.org/10.1007/s00193-013-0471-6

    Article  Google Scholar 

  21. Azarova, O.A., Knight, D.D.: Numerical prediction of dynamics of interaction of laser discharge plasma with a hemisphere-cylinder in a supersonic flow. 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech, Kissimmee, Florida, AIAA Paper 2015-0582 (2015). https://doi.org/10.2514/6.2015-0582

  22. Joarder, R., Padhi, U.P., Singh, A.P., Tummalapalli, H.: Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body. Int. J. Heat Mass Transf. 105, 723–740 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.025

    Article  Google Scholar 

  23. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor & Francis, Milton Park (1997)

    MATH  Google Scholar 

  24. Shuen, J.-S., Liou, M.-S., van Leer, B.: Inviscid flux-splitting algorithm for real gases with non-equilibrium chemistry. J. Comput. Phys. 90(2), 371–395 (1990). https://doi.org/10.1016/0021-9991(90)90172-W

    Article  MATH  Google Scholar 

  25. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979). https://doi.org/10.1006/jcph.1997.5704

    Article  MATH  Google Scholar 

  27. Van Albada, G.D., Van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84 (1982). https://doi.org/10.1007/978-3-642-60543-7_6

    MATH  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Joarder, R., Gebel, G.C., Mosbach, T.: Two-dimensional numerical simulation of a decaying laser spark in air with radiation loss. Int. J. Heat Mass Transf. 63, 284–300 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.072

    Article  Google Scholar 

  30. Dors, I., Parigger, C., Lewis, J.: Fluid dynamic effects following laser-induced optical breakdown. 38th Aerospace Sciences Meeting and Exhibit, AlAA Paper 2000-0717 (2000). https://doi.org/10.2514/6.2000-717

  31. Hosseini, H., Moosavi-Nejad, S., Akiyama, H., Menezes, V.: Shock wave interaction with interfaces between materials having different acoustic impedances. Appl. Phys. Lett. 104, 103701 (2014). https://doi.org/10.1063/1.4867883

    Article  Google Scholar 

  32. Haselbacher, A.: On impedance in shock-refraction problems. Shock Waves 22, 381–384 (2012). https://doi.org/10.1007/s00193-012-0377-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Joarder.

Additional information

Communicated by A. Sasoh and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joarder, R. On the mechanism of wave drag reduction by concentrated laser energy deposition in supersonic flows over a blunt body. Shock Waves 29, 487–497 (2019). https://doi.org/10.1007/s00193-018-0868-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0868-3

Keywords

Navigation