Skip to main content
Log in

Shock wave and flame front induced detonation in a rapid compression machine

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shafiee, S., Topal, E.: When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009). https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  2. Smith, K., Frumkin, H., Balakrishnan, K., Butler, C., Chafe, Z., Fairlie, I., Kinney, P., Kjellstrom, T., Mauzerall, D., McKone, T., McMichael, A., Schneider, M.: Energy and human health. Annu. Rev. Public Health 34(1), 159–188 (2013). https://doi.org/10.1146/annurev-publhealth-031912-114404

    Article  Google Scholar 

  3. Seinfeld, J., Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, Toronto (1998)

    Google Scholar 

  4. Wang, Z., Qi, Y., He, X., Wang, J., Shuai, S., Law, C.K.: Analysis of pre-ignition to super-knock: hotspot-induced deflagration to detonation. Fuel 144, 222–227 (2015). https://doi.org/10.1016/j.fuel.2014.12.061

    Article  Google Scholar 

  5. Qi, Y., Wang, Z., Wang, J., He, X.: Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combust. Flame 162, 4119–4128 (2015). https://doi.org/10.1016/j.combustflame.2015.08.016

    Article  Google Scholar 

  6. Wang, Z., Liu, H., Reitz, R.: Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 61, 78–112 (2017). https://doi.org/10.1016/j.pecs.2017.03.004

    Article  Google Scholar 

  7. Grogan, K.P., Goldsborough, S.S., Ihme, M.: Ignition regimes in rapid compression machines. Combust. Flame 162, 3071–3080 (2015). https://doi.org/10.1016/j.combustflame.2015.03.020

    Article  Google Scholar 

  8. Peters, N., Kerschgens, B., Paczko, G.: Super-knock prediction using a refined theory of turbulence. SAE Int. J. Engines 6(2), 953–967 (2013). https://doi.org/10.4271/2013-01-1109

    Article  Google Scholar 

  9. Im, H.G., Pal, P., Wooldridge, M.S., Mansfield, A.B.: A regime diagram for autoignition of homogeneous reactant mixtures with turbulent velocity and temperature fluctuations. Combust. Sci. Technol. 187, 1263–1275 (2015). https://doi.org/10.1080/00102202.2015.1034355

    Article  Google Scholar 

  10. Sankaran, R., Im, H.G., Hawkes, E.R., Chen, J.H.: The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture. Proc. Combust. Inst. 30, 875–882 (2005). https://doi.org/10.1016/j.proci.2004.08.176

    Article  Google Scholar 

  11. Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39, 211–214 (1980). https://doi.org/10.1016/0010-2180(80)90017-6

    Article  Google Scholar 

  12. Bradley, D., Morley, C., Gu, X.J., Emerson, D.R.: Amplified pressure waves during autoignition: relevance to CAI engines. SAE Technical Paper 2002-01-2868 (2002). https://doi.org/10.4271/2002-01-2868

  13. Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133, 63–74 (2003). https://doi.org/10.1016/S0010-2180(02)00541-2

    Article  Google Scholar 

  14. Dai, P., Chen, Z.: Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition. Combust. Flame 162, 4183–4193 (2015). https://doi.org/10.1016/j.combustflame.2015.08.002

    Article  Google Scholar 

  15. Dai, P., Chen, Z., Chen, S., Ju, Y.: Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35, 3045–3052 (2015). https://doi.org/10.1016/j.proci.2014.06.102

    Article  Google Scholar 

  16. Wang, Z., Qi, Y., Liu, H., Zhang, P., He, X., Wang, J.: Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder. Shock Waves 26, 687–691 (2016). https://doi.org/10.1007/s00193-016-0677-5

    Article  Google Scholar 

  17. Di, H., He, X., Zhang, P., Wang, Z., Wooldridge, M.S., Law, C.K., Wang, C., Shuai, S., Wang, J.: Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame 161, 2531–2538 (2014). https://doi.org/10.1016/j.combustflame.2014.04.014

    Article  Google Scholar 

  18. Wang, Z., Li, F., Wang, Y.: A generalized kinetic model with variable octane number for engine knock prediction. Fuel 188, 489–499 (2017). https://doi.org/10.1016/j.fuel.2016.10.067

    Article  Google Scholar 

  19. Tanaka, S., Ayala, F., Keck, J.C.: A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combust. Flame 133, 467–481 (2003). https://doi.org/10.1016/S0010-2180(03)00057-9

    Article  Google Scholar 

  20. Tsurushima, T.: A new skeletal PRF kinetic model for HCCI combustion. Proc. Combust. Inst. 32(2), 2835–2841 (2009). https://doi.org/10.1016/j.proci.2008.06.018

    Article  Google Scholar 

  21. Fieweger, K., Blumenthal, R., Adomeit, G.: Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure. Combust. Flame 109, 599–619 (1997). https://doi.org/10.1016/S0010-2180(97)00049-7

    Article  Google Scholar 

  22. Richards, K.J., Senecal, P.K., Pomraning, E.: CONVERGE (v2.2). Convergent Science, Inc., Madison (2015)

    Google Scholar 

  23. Mansfield, A.B., Wooldridge, M.S.: High-pressure low-temperature ignition behavior of syngas mixtures. Combust. Flame 161(9), 2242–2251 (2014). https://doi.org/10.1016/j.combustflame.2014.03.001

    Article  Google Scholar 

  24. Henderson, L.F.: The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607–637 (1966). https://doi.org/10.1017/S0022112066001435

    Article  Google Scholar 

  25. Abd-El-Fattah, A.M., Henderson, L.F., Lozzi, A.: Precursor shock waves at a slow–fast gas interface. J. Fluid Mech. 76, 157–176 (1976). https://doi.org/10.1017/S0022112076003182

    Article  MATH  Google Scholar 

  26. Abd-El-Fattah, A.M., Henderson, L.F.: Shock waves at a slow–fast gas interface. J. Fluid Mech. 89, 79–95 (1978). https://doi.org/10.1017/S0022112078002475

    Article  Google Scholar 

  27. Henderson, L.F.: On the refraction of shock waves. J. Fluid Mech. 198, 365–386 (1989). https://doi.org/10.1017/S0022112089000170

    Article  MathSciNet  MATH  Google Scholar 

  28. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987). https://doi.org/10.1017/S0022112087002003

    Article  Google Scholar 

  29. Han, Z., Yin, X.: Shock Dynamics. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-017-2995-6

    Book  MATH  Google Scholar 

  30. Austin, J.M., Pintgen, F., Shepherd, J.E.: Reaction zones in highly unstable detonations. Proc. Combust. Inst. 30, 1849–1857 (2005). https://doi.org/10.1016/j.proci.2004.08.157

    Article  Google Scholar 

  31. Radulescu, M.I., Sharpe, G.J., Law, C.K., Lee, J.H.S.: The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 31–78 (2007). https://doi.org/10.1017/S0022112007005046

    Article  MathSciNet  MATH  Google Scholar 

  32. Ju, Y., Shimano, A., Inoue, O.: Vorticity generation and flame distortion induced by shock flame interaction. Proc. Combust. Inst. 27(1), 735–74 (1998). https://doi.org/10.1016/S0082-0784(98)80467-0

    Article  Google Scholar 

  33. Picone, J.M., Oran, E.S., Boris, J.P., Young, T.R.: Theory of vorticity generation by shock wave and flame interactions. In: Dynamics of Shock Waves, Explosions, and Detonations, Progress in Astronautics and Aeronautics, vol. 94, AIAA (1985). https://doi.org/10.2514/5.9781600865695.0429.0448

  34. Markstein, G.H.: A shock tube study of flame front-pressure wave interactions. Proc. Combust. Inst. 6, 387–398 (1957). https://doi.org/10.1016/S0082-0784(57)80054-X

    Article  Google Scholar 

  35. Thomas, G.O., Bambrey, R., Brown, C.: Experimental observations of flame acceleration and transition to detonation following shock–flame interaction. Combust. Theory Model. 5, 573–594 (2001). https://doi.org/10.1088/1364-7830/5/4/304

    Article  Google Scholar 

  36. Dong, G., Fan, B., Ye, J.: Numerical investigation of ethylene flame bubble instability induced by shock waves. Shock Waves 17, 409–419 (2008). https://doi.org/10.1007/s00193-008-0124-3

    Article  Google Scholar 

  37. Dong, G., Fan, B., Gui, M., Li, B.: Numerical simulations of interactions between a flame bubble with an incident shock wave and its focusing wave. J. Mech. Eng. Sci. 223(10), 2357–2367 (2009). https://doi.org/10.1243/09544062JMES1467

    Article  Google Scholar 

  38. Chen, X., Dong, G., Jiang, H.: A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves. Acta Mech. Sin. 33(2), 316–326 (2017). https://doi.org/10.1007/s10409-017-0639-x

    Article  MATH  Google Scholar 

  39. Ivanov, M.F., Kiverin, A.D.: Generation of high pressures during the shock wave–flame interaction. High Temp. 53(5), 668–676 (2015). https://doi.org/10.1134/S0018151X15030086

    Article  Google Scholar 

  40. Robert, A., Richard, S., Colin, O., Poinsot, T.: LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust. Flame 162(7), 2788–2807 (2015). https://doi.org/10.1016/j.combustflame.2015.04.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed at Tsinghua University and was supported by the National Natural Science Foundation of China (Grant Nos. 91541206, 51706121), Tsinghua University Initiative Scientific Research Program (Grant No. 20161080114) and China Postdoctoral Science Foundation (Grant No. 2017T100076). Remy Mével was supported by a start-up fund of the Center for Combustion Energy of Tsinghua University. The authors are grateful to J.E. Shepherd from Caltech for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Qi.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 938 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qi, Y., Xiang, S. et al. Shock wave and flame front induced detonation in a rapid compression machine. Shock Waves 28, 1109–1116 (2018). https://doi.org/10.1007/s00193-018-0832-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0832-2

Keywords

Navigation