Miles, A.R.: The blast-wave-driven instability as a vehicle for understanding supernova explosion structure. Astrophys. J. 696, 498–514 (2009). https://doi.org/10.1088/0004-637X/696/1/498
Article
Google Scholar
Inoue, T., Yamazaki, R., Inutsuka, S.-I.: Turbulence and magnetic field amplification in supernova remnants: interactions between a strong shock wave and multiphase interstellar medium. Astrophys. J. 695, 825–833 (2009). https://doi.org/10.1088/0004-637X/695/2/825
Article
Google Scholar
Kieffer, S.W.: Blast dynamics at Mount St Helens on 18 May 1980. Nature 291, 568–570 (1981). https://doi.org/10.1038/291568a0
Article
Google Scholar
Formenti, Y., Druitt, T.H., Kelfoun, K.: Characterisation of the 1997 Vulcanian explosions of Soufriere Hills Volcano, Montserrat, by video analysis. Bull. Volcanol. 65, 587–605 (2003). https://doi.org/10.1007/s00445-003-0288-8
Article
Google Scholar
Aglitskiy, Y., Vilikovich, A.L., Karasik, M., Metzler, N., Zalesak, S.T., Schmitt, A.J., Phillips, L., Gardner, J.H., Serlin, V., Weaver, J.L., Obenschain, S.P.: Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions. Phil. Trans. R. Soc. A 368, 1739–1768 (2010). https://doi.org/10.1098/rsta.2009.0131
Article
Google Scholar
Eckhoff, R.K.: Dust explosion prevention and mitigation, status and developments in basic knowledge and in practical application. Int. J. Chem. Eng. 2009, 569825 (2009). https://doi.org/10.1155/2009/569825
Article
Google Scholar
Frost, D.L., Kleine, H., Slanik, M., Higgins, A., McCahan, S., Zhang, F., Murray, S.B.: Blast waves from heterogeneous explosives. In: Ball, G.J., Hillier, R., Roberts, G.T. (eds.) Proceedings of the 22nd International Symposium on Shock Waves, vol. 2, pp. 947–952. Imperial College, London, 18–23 July (1999)
Allen, R.M., Kirkpatrick, D.J., Longbottom, A.W., Milne, A.M., Bourne, N.K.: Experimental and numerical study of free-field blast mitigation. AIP Conf. Proc. 706(1), 823–826 (2004). https://doi.org/10.1063/1.1780363
Article
Google Scholar
Frost, D.L., Ornthanalai, C., Zarei, Z., Tanguay, V., Zhang, F.: Particle momentum effects from the detonation of heterogeneous explosives. J. Appl. Phys. 101(11), 113529 (2007). https://doi.org/10.1063/1.2743912
Article
Google Scholar
Ling, Y., Haselbacher, A., Balachandar, S.: Importance of unsteady contributions to force and heating for particles in compressible flows. Part 1: Modeling and analysis for shockparticle interaction. Int. J. Multiph. Flow 37, 1026–1044 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.001
Article
Google Scholar
Boiko, V.M., Kiselev, V.P., Kiselev, S.P., Papyrin, A.N., Poplavskii, S.V., Fomin, V.M.: Interaction of a shock wave with a cloud of particles. Combust. Explos. Shock Waves 32(2), 191–203 (1996). https://doi.org/10.1007/BF02097090
Article
MATH
Google Scholar
Soo, M., Goroshin, S., Bergthorson, J.M., Frost, D.L.: Reaction of a particle suspension in a rapidly-heated oxidizing gas. Propellants Explos. Pyrotech. (2015). https://doi.org/10.1002/prep.201400269
Google Scholar
Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005). https://doi.org/10.1038/nature03805
Article
Google Scholar
Frost, D.L., Gregoire, Y., Petel, O.E., Goroshin, S., Zhang, F.: Particle jet formation during explosive dispersal of solid particles. Phys. Fluids 24(9), 091109 (2012). https://doi.org/10.1063/1.4751876
Article
Google Scholar
Rodriguez, V., Saurel, R., Jourdan, G., Houas, L.: Impulsive dispersion of a granular layer by a weak blast wave. Shock Waves 27(2), 187–198 (2016). https://doi.org/10.1007/s00193-016-0658-8
Article
Google Scholar
Wagner, J.L., Beresh, S.J., Kearney, S.P., Corbin, C., Trott, W.M., Castaneda, J.N., Pruett, B.O., Baer, M.R.: A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52, 1507–1517 (2012). https://doi.org/10.1007/s00348-012-1272-x
Article
Google Scholar
Ling, Y., Wagner, J.L., Beresh, S.J., Kearney, S.P., Balachandar, S.: Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments. Phys. Fluids 24, 113301 (2012). https://doi.org/10.1063/1.4768815
Article
Google Scholar
Loiseau, J., Pontalier, Q., Milne, A.M., Goroshin, S., Frost, D.L.: Terminal velocity of liquids and granular materials accelerated by a high explosive. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-018-0822-4
Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960). https://doi.org/10.1002/cpa.3160130207
MathSciNet
Article
Google Scholar
Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4(5), 101–104 (1969). https://doi.org/10.1007/BF01015969
Article
Google Scholar
Vorobieff, P., Anderson, M., Conroy, J., White, R., Truman, C.R., Kumar, S.: Vortex formation in a shock-accelerated gas induced by particle seeding. Phys. Rev. Lett. 106, 184503 (2011). https://doi.org/10.1103/PhysRevLett.106.184503
Article
Google Scholar
Anderson, M., Vorobieff, P., Truman, C.R., Corbin, C., Kuehner, G., Wayne, P., Conroy, J., White, R., Kumar, S.: An experimental and numerical study of shock interaction with a gas column seeded with droplets. Shock Waves 25, 107–125 (2015). https://doi.org/10.1007/s00193-015-0555-6
Article
Google Scholar
Haas, J.-F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987). https://doi.org/10.1017/S0022112087002003
Article
Google Scholar
Ukai, S., Balakrishnan, K., Menon, S.: On Richtmyer–Meshkov instability in dilute gas–particle mixtures. Phys. Fluids 22, 104103 (2010). https://doi.org/10.1063/1.3507318
Article
Google Scholar
Rodriguez, V., Saurel, R., Jourdan, G., Houas, L.: Solid-particle jet formation under shock-wave acceleration. Phys. Rev. E 88, 063011 (2013). https://doi.org/10.1103/PhysRevE.88.063011
Article
Google Scholar
Rodriguez, V., Saurel, R., Jourdan, G., Houas, L.: External front instabilities induced by a shocked particle ring. Phys. Rev. E 90, 043013 (2014). https://doi.org/10.1103/PhysRevE.90.043013
Article
Google Scholar
Xue, K., Du, K., Shi, X., Gan, Y., Bai, C.: Dual hierarchical particle jetting of a particle ring undergoing radial explosion. Soft Matter (2018). https://doi.org/10.1039/C8SM00209F
Google Scholar
Milne, A.M., Floyd, E., Longbottom, A.W., Taylor, P.: Dynamic fragmentation of powders in spherical geometry. Shock Waves 24, 501–513 (2014). https://doi.org/10.1007/s00193-014-0511-x
Article
Google Scholar
Milne, A.M., Parrish, C., Worland, I.: Dynamic fragmentation of blast mitigants. Shock Waves 20(1), 41–51 (2010). https://doi.org/10.1007/s00193-009-0235-5
Article
Google Scholar
Zhang, F., Frost, D.L., Thibault, P.A., Murray, S.B.: Explosive dispersal of solid particles. Shock Waves 10(6), 431–443 (2001). https://doi.org/10.1007/PL00004050
Article
MATH
Google Scholar
Ripley, R.C., Zhang, F., Lien, F.-S.: Acceleration and heating of metal particles in condensed matter detonation. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 468(2142), 1564–1590 (2012). https://doi.org/10.1098/rspa.2011.0595
MathSciNet
Article
MATH
Google Scholar
Ritzel, D.V., Ripley, R.C., Murray, S.B., Anderson, J.: Near-field blast phenomenology of thermobaric explosions. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 305–310. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-85168-4_48
Chapter
Google Scholar
Murray, S.B., Anderson, C.J., Gerrard, K.B., Smithson, T., Williams, K., Ritzel, D.V.: Overview of the 2005 Northern Lights Trials. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 335–340. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-85168-4_53
Chapter
Google Scholar
Ripley, R.C., Donahue, L., Dunbar, T.E., Murray, S.B., Anderson, C.J., Zhang, F., Ritzel, D.V.: Ground reflection interaction with height-of-burst metalized explosions. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 281–286. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-85168-4_44
Chapter
Google Scholar
Krimi, A., Rezoug, M., Khelladi, S., Nogueira, X., Deligant, M., Ramrez, L.: Smoothed particle hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations. J. Comput. Phys. 358, 53–87 (2018). https://doi.org/10.1016/j.jcp.2017.12.006
MathSciNet
Article
MATH
Google Scholar
Gregoire, Y., Frost, D.L., Petel, O.: Development of instabilities in explosively dispersed particles. AIP Conf. Proc. 1426, 1623–1626 (2012). https://doi.org/10.1063/1.3686596
Article
Google Scholar
Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42(1), 111–133 (2010). https://doi.org/10.1146/annurev.fluid.010908.165243
Article
MATH
Google Scholar
Bdzil, J.B., Menikoff, R., Son, S.F., Kapila, A.K., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Phys. Fluids 11(2), 378–402 (1999). https://doi.org/10.1063/1.869887
Article
MATH
Google Scholar
Baer, M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384(1–2), 351–367 (2002). https://doi.org/10.1016/S0040-6031(01)00794-8
Article
Google Scholar
Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861–889 (1986). https://doi.org/10.1016/0301-9322(86)90033-9
Article
MATH
Google Scholar
Carrier, G.F.: Shock waves in a dusty gas. J. Fluid Mech. 4(4), 376–382 (1958). https://doi.org/10.1017/S0022112058000513
MathSciNet
Article
MATH
Google Scholar
Marble, F.E.: Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2(1), 397–446 (1970). https://doi.org/10.1146/annurev.fl.02.010170.002145
Article
Google Scholar
Balachandar, S.: Recent advances in compressible multiphase flows explosive dispersal of particles. In: Future Directions in CFD Research, a Modeling and Simulation Conference, Hampton (2012)
Osnes, A.N., Vartdal, M., Pettersson Reif, B.A.: Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0778-9
Black, W.J., Denissen, N., McFarland, J.A.: Particle force model effects in a shock-driven multiphase instability. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0790-0
Pontalier, Q., Lhoumeau, M.G., Milne, A.M., Longbottom, A.W., Frost, D.L.: Numerical investigation of particle–blast interaction during explosive dispersal of liquids and granular materials. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-018-0820-6
Ling, Y., Balachandar, S.: Simulation and scaling analysis of a spherical particle-laden blast wave. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0799-4
Mo, H., Lien, F.-S., Zhang, F., Cronin, D.S.: A numerical framework for the direct simulation of dense particulate flow under explosive dispersal. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0741-9
Sen, O., Gaul, N.J., Davis, S., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0801-1
Ripley, R.C.: Acceleration and heating of metal particles in condensed matter detonation. PhD Thesis, University of Waterloo (2010)
van der Hoef, M.A., van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40(1), 47–70 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102130
MathSciNet
Article
MATH
Google Scholar
Pontalier, Q., Loiseau, J., Goroshin, S., Frost, D.L.: Experimental investigation of blast mitigation and particle–blast interaction during the high-explosive dispersal of particles and liquids. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-018-0821-5
McGrath, T., Clair, J.S., Balachandar, S.: Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0726-8
Bai, C.-H., Wang, Y., Xue, K., Wang, L.-F.: Experimental study of detonation of large-scale powder–droplet–vapor mixtures. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0795-8
Rigby, S.E., Fay, S.D., Tyas, A., Clarke, S.D., Reay, J.J., Warren, J.A., Gant, M., Elgy, I.: Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-017-0727-7
Sugiyama, Y., Izumo, M., Ando, H., Matsuo, A.: Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill. Shock Waves 28(3) (2018). https://doi.org/10.1007/s00193-018-0813-5