Shock Waves

, Volume 29, Issue 2, pp 307–320 | Cite as

LIGS measurements in the nozzle reservoir of a free-piston shock tunnel

  • P. Altenhöfer
  • T. SanderEmail author
  • F. Koroll
  • Ch. Mundt
Original Article


Free-piston shock tunnels are ground-based test facilities allowing the simulation of reentry flow conditions in a simple and cost-efficient way. For a better understanding of the processes occurring in a shock tunnel as well as for an optimal comparability of experimental data gained in shock tunnels to numerical simulations, it is highly desirable to have the best possible characterization of the generated test gas flows. This paper describes the final step of the development of a laser-induced grating spectroscopy (LIGS) system capable of measuring the temperature in the nozzle reservoir of a free-piston shock tunnel during tests: the successful adaptation of the measurement system to the shock tunnel. Preliminary measurements were taken with a high-speed camera and a LED lamp in order to investigate the optical transmissibility of the measurement volume during tests. The results helped to successfully measure LIGS signals in shock tube mode and shock tunnel mode in dry air seeded with NO. For the shock tube mode, six successful measurements for a shock Mach number of about 2.35 were taken in total, two of them behind the incoming shock (p\(\approx \) 1 MPa, T\(\approx \) 600 K) and four after the passing of the reflected shock (p\(\approx \) 4 MPa, T\(\approx \) 1000 K). For five of the six measurements, the derived temperatures were within a deviation range of \(6\%\) to a reference value calculated from measured shock speed. The uncertainty estimated was less than or equal to \(3.5\%\) for all six measurements. Two LIGS signals from measurements behind the reflected shock in shock tunnel mode were analyzed in detail. One of the signals allowed an unambiguous derivation of the temperature under the conditions of a shock with Mach 2.7 (p\(\approx \) 5 MPa, T\(\approx \) 1200 K, deviation \(0.5\%\), uncertainty \(4.9\%\)).


Free-piston shock tunnel LIGS Laser-induced grating spectroscopy LITA High-temperature measurements 


  1. 1.
    Schemperg, K., Mundt, C.: Study of numerical simulations for optimized operation of the free piston shock tunnel HELM. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2008-2653 (2008).
  2. 2.
    Stalker, R.J., Paull, A., Mee, D.J., Morgan, R.G., Jacobs, P.A.: Scramjets and shock tunnels–the Queensland experience. Prog. Aerosp. Sci. 41(6), 471–513 (2005). CrossRefGoogle Scholar
  3. 3.
    Sander, T., Altenhöfer, P., Mundt, C.: Development of laser-induced grating spectroscopy for application in shock tunnels. J. Thermophys. Heat Transf. 28(1), 27–31 (2014). CrossRefGoogle Scholar
  4. 4.
    Sander, T., Altenhöfer, P., Mundt, C.: Temperature measurements in a shock tube using laser-induced grating spectroscopy. J. Thermophys. Heat Transf. 30(1), 62–66 (2016). CrossRefGoogle Scholar
  5. 5.
    Pearse, R., Gaydon, A.: The Identification of Molecular Spectra, 4th edn. Chapman and Hall, London (1976)CrossRefGoogle Scholar
  6. 6.
    Hsu, D.K., Monts, D.L., Zare, R.N.: Spectral Atlas of Nitrogen Dioxide 5330 to 6480 Å. Academic Press, New York (1978)Google Scholar
  7. 7.
    Altenhöfer, P.: Aufbau und Anwendung eines LIGS-Messsystems am Stoßwellenkanal HELM. Ph.D. Thesis, Institute for Thermodynamics, University of Federal Armed Forces Munich, Neubiberg, Germany (2017)Google Scholar
  8. 8.
    Stalker, R.J.: A study of the free-piston shock tunnel. AIAA J. 5(12), 2160–265 (1967). CrossRefGoogle Scholar
  9. 9.
    Mizukaki, T., Matsuzawa, T.: Application of laser-induced thermal acoustics in air to measurement of shock-induced temperature changes. Shock Waves 19(5), 361–369 (2009). CrossRefGoogle Scholar
  10. 10.
    Herring, G., Meyers, J., Hart, R.: Shock-strength determination with seeded and seedless laser methods. Meas. Sci. Technol. 20(4), 045304 (2009). CrossRefGoogle Scholar
  11. 11.
    Förster, F., Baab, S., Lamanna, G., Weigand, B.: Temperature and velocity determination of shock-heated flows with non-resonant heterodyne laser-induced thermal acoustics. Appl. Phys. B 121(3), 235–248 (2015). CrossRefGoogle Scholar
  12. 12.
    Cummings, E.B.: Laser-induced thermal acoustics. Ph.D. Thesis, California Institute of Technology, Pasadena, United States (1995)Google Scholar
  13. 13.
    Latzel, H., Dreizler, A., Dreier, T., Heinze, J., Dillmann, M., Stricker, W., Lloyd, G.M., Ewart, P.: Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames. Appl. Phys. B 67(5), 667–673 (1998). CrossRefGoogle Scholar
  14. 14.
    Stampanoni-Panariello, A.: Laser-induced gratings in the gas phase: formation mechanisms and applications for diagnostics. Ph.D. Thesis, Swiss Federal Institute of Technology ETH, Zurich, Switzerland (2003).
  15. 15.
    Butenhoff, T.J.: Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique. Int. J. Thermophys. 16(1), 1–9 (1995). CrossRefGoogle Scholar
  16. 16.
    Schlamp, S., Rösgen, T., Kozlov, D., Rakut, C., Kasal, P., von Wolfersdorf, J.: Transient grating spectroscopy in a hot turbulent compressible free jet. J. Propuls. Power 21(6), 1008–1018 (2005). CrossRefGoogle Scholar
  17. 17.
    Cummings, E.B.: Laser-induced thermal acoustics: simple accurate gas measurements. Opt. Lett. 19(17), 1361–1363 (1994). CrossRefGoogle Scholar
  18. 18.
    Stampanoni-Panariello, A., Kozlov, D.N., Radi, P.P., Hemmerling, B.: Gas phase diagnostics by laser-induced gratings. I. Theory. Appl. Phys. B 81(1), 101–111 (2005). Google Scholar
  19. 19.
    Stampanoni-Panariello, A., Kozlov, D.N., Radi, P.P., Hemmerling, B.: Gas phase diagnostics by laser-induced gratings. II. Experiments. Appl. Phys. B 81(1), 113–129 (2005). CrossRefGoogle Scholar
  20. 20.
    Schlamp, S., Allen-Bradley, E.: Homodyne detection laser-induced thermal acoustics velocimetry. In: 38th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2000-376 (2000).
  21. 21.
    Cummings, E.B., Leyva, I.A., Hornung, H.G.: Laser-induced thermal acoustics (LITA) signals from finite beams. Appl. Opt. 34(18), 3290–3302 (1995). CrossRefGoogle Scholar
  22. 22.
    Lemmon, E., Jacobsen, R., Penoncello, S., Friend, D.: Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J. Phys. Chem. Ref. Data 29(3), 331–385 (2000). CrossRefGoogle Scholar
  23. 23.
    MATLAB and Curve Fitting Toolbox Release: The MathWorks Inc., Natick (2014)Google Scholar
  24. 24.
    Oertel, H.: Stoßrohre: Theorie, Praxis, Anwendungen; mit einer Einführung in die Physik der Gase. Springer, Vienna (1966)Google Scholar
  25. 25.
    Sander, T.: Optische Messmethoden in der Aerothermodynamik/Thermofluiddynamik. Habilitation, Institute for Thermodynamics, University of Federal Armed Forces Munich, Neubiberg (2016)Google Scholar
  26. 26.
    Farooq, A., Jeffries, J.B., Hanson, R.K.: Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of \(\text{ CO }_2\) near 2.7 \(\upmu \text{ m }\). Appl. Phys. B 96(1), 161–173 (2009). CrossRefGoogle Scholar
  27. 27.
    Coleman, H., Steele, W.: Experimentation and Uncertainty Analysis for Engineers, 2nd edn. Wiley, New York (1989)Google Scholar
  28. 28.
    Vandaele, A.C., Hermans, C., Simon, P.C., Carleer, M., Colin, R., Fally, S., Mérienne, M.F., Jenouvrier, A., Coquart, B.: Measurements of the \(\text{ NO }_{2}\) absorption cross-section from 42000 \(\text{ cm }^{-1}\) to 10000 \(\text{ cm }^{-1}\) (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 59(3–5), 171–184 (1998). CrossRefGoogle Scholar
  29. 29.
    Schneider, W., Moortgat, G.K., Tyndall, G.S., Burrows, J.P.: Absorption cross-sections of \(\text{ NO }_{2}\) in the UV and visible region (200–700 nm) at 298 K. J. Photochem. Photobiol. A Chem. 40(2–3), 195–217 (1987). CrossRefGoogle Scholar
  30. 30.
    Selcan, C., Sander, T., Altenhöfer, P., Koroll, F., Mundt, C.: Stagnation temperature measurements in a shock-tunnel facility using laser-induced grating spectroscopy. J. Thermophys. Heat Transf. 32(1), 226–236 (2017). CrossRefGoogle Scholar
  31. 31.
    Brown, M.S., Roberts, W.L.: Single-point thermometry in high-pressure, sooting, premixed combustion environments. J. Propuls. Power 15(1), 119–127 (1999). CrossRefGoogle Scholar
  32. 32.
    Zuckerwar, A.: Speed of sound in real gases. I. Theory. J. Acoust. Soc. Am. 100(4), 2747 (1996). Google Scholar
  33. 33.
    Danehy, P.M., Paul, P.H., Farrow, R.L.: Thermal-grating contributions to degenerate four-wave mixing in nitric oxide. J. Opt. Soc. Am. B Opt. Phys. 12(9), 1564–1576 (1995).
  34. 34.
    Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. Robert E. Krieger Publishing Company, New York (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for ThermodynamicsUniversity of Federal Armed Forces MunichNeubibergGermany

Personalised recommendations