Advertisement

Shock Waves

, Volume 28, Issue 4, pp 815–828 | Cite as

Control of a Mach reflection-induced interaction using an array of vane-type vortex generators

  • S. B. Verma
  • C. Manisankar
Original Article

Abstract

An experimental investigation was conducted to control a Mach reflection (MR)-induced flow separation in a Mach 2.05 flow using a 18\(^{\circ }\) shock generator (SG). The study was extended to four SG exit heights (g / w) of 0.87, 0.81, 0.725, and 0.66 primarily to study its effect on the extent of flow separation as well as on Mach stem height, with and without control. Two vane-type vortex generator configurations, namely the ramp vane (RV) with device heights \(h/\delta = 0.3, 0.5, 0.8\), and 1.0 and the rectangular vane (RRV) with \(h/\delta = 0.3\) and 0.5, were studied for control. Each control device array was implemented 10\(\delta \) upstream of the separation location for no control. For stable MR interactions (i.e., \(g/w = 0.87, 0.81\)), the extent of separation and the reattachment shock strength are seen to decrease with increase in RV height (with \(h/\delta =1.0\) device showing 17% reduction). However, for unstable MR condition (i.e., \(g/w = 0.725\)), RV devices of \(h/\delta = 0.8\) and 1.0 become ineffective. The RRV2 device (\(h/\delta =0.5\)), on the other hand, was found to be more effective in reducing the extent of separation in both the stable (31%) and unstable (24%) MR conditions. The effectiveness of each control device is also accompanied with an increase in height of the Mach stem. This is, however, not seen as a serious limitation since in such strong interactions it is more important to prevent or avert an intake unstart condition. The separation shock unsteadiness or the \(\sigma _{\mathrm{max}}/P_{\mathrm{w}}\) value, on the other hand, is seen to increase considerably with controls and seems to be almost independent for \(h/\delta \ge 0.5\).

Keywords

Mach reflection Flow separation Mach stem Shock strength Vane-type control device 

Notes

Acknowledgements

The authors wish to thank the National Trisonic Aerodynamic Facility Division of NAL for their support in the execution of this project. The technical support of Narayana during the model design and fabrication as well as of Janardhan and Jones Philip, staff of the 0.3-m wind tunnel facility at NAL during the test campaigns, is gratefully acknowledged. Special thanks to Gangadhar, Shanmogan, Charan Singh, and Anupam Mantry of the NAL Belur Model Shop for model fabrication.

References

  1. 1.
    Babinsky, H., Harvey, J.K.: Shock Wave—Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Dolling, D.S., Murphy, M.T.: Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow-field. AIAA J. 21, 1628–1634 (1983).  https://doi.org/10.2514/3.60163 CrossRefGoogle Scholar
  3. 3.
    Humble, R.A., Scarano, F., van Oudheusden, B.W.: Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 47–74 (2009).  https://doi.org/10.1017/S0022112009007630 CrossRefMATHGoogle Scholar
  4. 4.
    Délery, J., Dussauge, J.P.: Some physical aspects of shockwave/boundary layer interactions. Shock Waves 19, 453–468 (2009).  https://doi.org/10.1007/s00193-009-0220-z CrossRefMATHGoogle Scholar
  5. 5.
    Raghunathan, S.: Passive control of shock boundary layer interaction. Prog. Aerosp. Sci. 25(3), 271–296 (1988).  https://doi.org/10.1016/0376-0421(88)90002-4 CrossRefGoogle Scholar
  6. 6.
    Stanewsky, E.: Aerodynamic benefits of adaptive wing technology. Aerosp. Sci. Technol. 4, 439–452 (2000).  https://doi.org/10.1016/S1270-9638(00)01069-5 CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Tan, H., Tian, F.-C., Zhuang, Y.: Control of incident shock/boundary-layer interaction by a two-dimensional bump. AIAA J. (2014).  https://doi.org/10.2514/1.J052786 Google Scholar
  8. 8.
    Wong, W.S., Qina, N., Sellars, N., Holden, H., Babinsky, H.: A combined experimental and numerical study of flow structures over three-dimensional shock control bumps. Aerosp. Sci. Technol. 12, 436–447 (2008).  https://doi.org/10.1016/j.ast.2007.10.011 CrossRefMATHGoogle Scholar
  9. 9.
    König, B., Pätzold, M., Lutz, T., Krämer, E., Rosemann, H., Richter, K., Uhlemann, H.: Numerical and experimental validation of three-dimensional shock control bumps. J. Aircr. (2009).  https://doi.org/10.2514/1.41441
  10. 10.
    Ogawa, H., Babinsky, H., Pätzold, M., Lutz, T.: Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings. AIAA J. (2008).  https://doi.org/10.2514/1.32049 Google Scholar
  11. 11.
    Kim, S.D.: Aerodynamic design of a supersonic inlet with a parametric bump. J. Aircr. (2009).  https://doi.org/10.2514/1.37416 Google Scholar
  12. 12.
    Chinneck, A., Jones, G. C. A, Tracey. C.M.: An interim report on the use of blowing to reduce fall in control effectiveness associated with shock-induced separation at transonic speeds. ARC 1756 FM2231Google Scholar
  13. 13.
    Delery, J.: Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22(4), 209–280 (1985).  https://doi.org/10.1016/0376-0421(85)90001-6 CrossRefGoogle Scholar
  14. 14.
    Fukuda, M.K., Hingst, W.R., Reshotko, E.: Control of shock wave-boundary layer interaction by bleed in supersonic mixed compression inlets. J. Aircr. 14, 151–156 (1977).  https://doi.org/10.2514/3.58756 CrossRefGoogle Scholar
  15. 15.
    Krogmann, P., Stanewsky, E., Thiede, P.: Effects of suction on shock/boundary-layer interaction and shock-induced separation. J. Aircr. 22(1), 37–42 (1985).  https://doi.org/10.2514/3.45077 CrossRefGoogle Scholar
  16. 16.
    Ball, K.O.W., Korkegi, R.H.: An investigation of the effect of suction on hypersonic laminar boundary-layer separation. AIAA J. 6, 239–243 (1968).  https://doi.org/10.2514/3.4484 CrossRefGoogle Scholar
  17. 17.
    McCormick, D.C.: Shock/boundary-layer interaction control with vortex generators and passive cavity. AIAA J. 31(1), 91–96 (1993).  https://doi.org/10.2514/3.11323 CrossRefGoogle Scholar
  18. 18.
    Barter, J.W., Dolling, D.S.: Reduction of fluctuating pressure loads in shock boundary-layer interactions using vortex generators. AIAA J. 10, 1842–1849 (1995).  https://doi.org/10.2514/3.12736 CrossRefGoogle Scholar
  19. 19.
    Ashill, P.R., Fulker, J.L., Hackett, K.C.: Studies of flows induced by sub boundary layer vortex generators (SBVGs). In: 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2002-0968 (2002).  https://doi.org/10.2514/6.2002-968
  20. 20.
    Anderson, B.H., Tinapple, J., Surber, L.: Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation. In: 3rd AIAA Flow Control Conference, AIAA Paper 2006-3197 (2006).  https://doi.org/10.2514/6.2006-3197
  21. 21.
    Lin, J.C.: Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38(4–5), 389–420 (2002).  https://doi.org/10.1016/S0376-0421(02)00010-6 CrossRefGoogle Scholar
  22. 22.
    Panaras, A.G., Lu, F.K.: Micro-vortex generators for shock wave/boundary layer interactions. Prog. Aerosp. Sci. 74, 16–47 (2015).  https://doi.org/10.1016/j.paerosci.2014.12.006 CrossRefGoogle Scholar
  23. 23.
    Seifert, A., Pack, L.G.: Active control of separated flows on generic configurations at high Reynolds numbers. In: 30th Fluid Dynamics Conference, AIAA Paper 99-3403.  https://doi.org/10.2514/6.1999-3403
  24. 24.
    McCormick, D.C.: Boundary layer separation control with directed synthetic jet. In: 38th Aerospace Sciences Meeting and Exhibit, AIAA Paper 00-0519 (2000).  https://doi.org/10.2514/6.2000-519
  25. 25.
    Glezer, A., Amitay, M.: Synthetic jets. Annu. Rev. Fluid Mech. 34, 503–529 (2002).  https://doi.org/10.1146/annurev.fluid.34.090501.094913 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Narayanaswamy, V., Raja, L.L., Clemens, N.T.: Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA J. 48(2), 297–305 (2010).  https://doi.org/10.2514/1.41352 CrossRefGoogle Scholar
  27. 27.
    Greene, B.R., Clemens, N.T., Magari, P., Micka, D.: Control of mean separation in shock boundary layer interaction using pulsed plasma jets. Shock Waves (2015).  https://doi.org/10.1007/s00193-014-0524-5
  28. 28.
    Cattafesta III, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011).  https://doi.org/10.1146/annurev-fluid-122109-160634 CrossRefMATHGoogle Scholar
  29. 29.
    Szwabe, R.: Shock wave induced separation control by streamwise vortices. J. Therm. Sci. 14(3), 249–253 (2005).  https://doi.org/10.1007/s11630-005-0009-z CrossRefGoogle Scholar
  30. 30.
    Souverein, L.J., Debiève, J.F.: Effect of air jet vortex generators on a shock wave boundary layer interaction. Exp. Fluids 49, 1053–1064 (2010).  https://doi.org/10.1007/s00348-010-0854-8 CrossRefGoogle Scholar
  31. 31.
    Verma, S.B., Manisankar, C.: Shockwave/boundary-layer interaction control on a compression ramp using steady micro jets. AIAA J. 50(12), 2753–2764 (2012).  https://doi.org/10.2514/1.J051577 CrossRefGoogle Scholar
  32. 32.
    Uzun, A., Solomon, J.T., Foster, C.H., Oates, W.S., Hussaini, M.Y., Alvi, F.S.: Flow physics of a pulsed micro-jet actuator for high-speed flow control. AIAA J. 51(12), 2894–2918 (2013).  https://doi.org/10.2514/1.J052525 CrossRefGoogle Scholar
  33. 33.
    Lin, J.C.: Control of turbulent boundary-layer separation using micro-vortex generators. In: 30th AIAA Fluid Dynamics Conference, AIAA Paper 99-3404, Norfolk, VA, June 28–July 1 (1999).  https://doi.org/10.2514/6.1999-3404
  34. 34.
    Jenkins, L., Gorton, S.A., Anders, S.: Flow control device evaluation for an internal flow with an adverse pressure gradient. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 14–17, AIAA Paper 2002-0266 (2002).  https://doi.org/10.2514/6.2002-266
  35. 35.
    Ashill, P.R., Fulker, J.L., Hackett, K.C.: Research at DERA on sub boundary layer vortex generators (SBVGs). In: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 8–11, AIAA Paper 2001-0887 (2001).  https://doi.org/10.2514/6.2001-887
  36. 36.
    Lee, S., Loth, E., Babinsky, H.: Normal shock boundary layer control with various vortex generator geometries. Comput. Fluids 49(1), 233–246 (2011).  https://doi.org/10.1016/j.compfluid.2011.06.003 CrossRefMATHGoogle Scholar
  37. 37.
    Lee, S., Loth, E.: Impact of ramped vanes on normal shock boundary-layer interaction. AIAA J. 50(10), 2069–2079 (2012).  https://doi.org/10.2514/1.J051253 CrossRefGoogle Scholar
  38. 38.
    Verma, S.B., Manisankar, C.: Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation. AIAA J. 55(7), 2228–2240 (2017).  https://doi.org/10.2514/1.J055446 CrossRefGoogle Scholar
  39. 39.
    Titchener, N., Babinsky, H., Loth, E.: The effects of various vortex generator configurations on a normal shock wave/boundary layer interaction. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0018.  https://doi.org/10.2514/6.2013-18
  40. 40.
    Holden, H., Babinsky, H.: Effect of micro vortex generators on separated normal shock/boundary layer interactions. J. Aircr. 44(1), 170–174 (2007).  https://doi.org/10.2514/1.22770 CrossRefGoogle Scholar
  41. 41.
    Verma, S.B., Hadjadj, A.: Supersonic flow control. Shock Waves 25(5), 443–449 (2015).  https://doi.org/10.1007/s00193-015-0587-y CrossRefGoogle Scholar
  42. 42.
    Blinde, P.L., Humble, R.A., Oudheusden, B.W., Scarano, F.: Effects of micro-ramps on a shockwave/turbulent boundary layer interaction. Shock Waves 19, 507–520 (2009).  https://doi.org/10.1007/s00193-009-0231-9 CrossRefGoogle Scholar
  43. 43.
    Kusunose, K., Yu, N.J.: Vortex generator installation drag on an airplane near its cruise condition. J. Aircr. 40(6), 1145–1151 (2003).  https://doi.org/10.2514/2.7203 CrossRefGoogle Scholar
  44. 44.
    Babinsky, H., Li, Y., Pitt Ford, C.W.: Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J. 47(3), 668–675 (2009).  https://doi.org/10.2514/1.38022 CrossRefGoogle Scholar
  45. 45.
    Giepman, R.H.M., Schrijer, F.F.J., van Oudheusden, B.W.: Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size. Phys. Fluids 26(6), 066101 (2014).  https://doi.org/10.1063/1.4881941 CrossRefGoogle Scholar
  46. 46.
    Nolan, W.R., Babinsky, H.: Comparison of micro-vortex generators in supersonic flows. In: 6th AIAA Flow Control Conference, AIAA Paper 2012-2812 (2012).  https://doi.org/10.2514/6.2012-2812
  47. 47.
    Verma, S.B., Manisankar, C.: Transition control of Mach to regular reflection induced interaction using an array of micro ramp vane-type vortex generators. Phys. Fluids 27(10), 107102 (2015).  https://doi.org/10.1063/1.4932405
  48. 48.
    Skews, B.W.: Aspect ratio effects in wind tunnel studies of shock wave reflection transition. Shock Waves 7(6), 373–383 (1997).  https://doi.org/10.1007/s001930050092 CrossRefGoogle Scholar
  49. 49.
    Van Driest, E.R.: Turbulent boundary layer in compressible flows. J. Aeronaut. Sci. 18(3), 145–160 (1951).  https://doi.org/10.2514/2.7048 MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    O’Donnell, R.M.: Experimental investigation at a Mach number of 2.41 of average skin-friction coefficients and velocity profiles for laminar and turbulent boundary layers and an assessment of probe effects. National Advisory Committee for Aeronautics Technical Note, Report No. NACA TN 3122 (1954)Google Scholar
  51. 51.
    Li, H., Ben-Dor, G.: A parametric study of Mach reflection in steady flows. J. Fluid Mech. 341, 101–125 (1997)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Vuillon, J., Zeitoun, D., Ben-Dor, G.: Reconsideration of oblique shock wave reflections in steady flows. Part 2. Numerical investigation. J. Fluid Mech. 301, 37–50 (1995).  https://doi.org/10.1017/S0022112095003788 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Experimental Aerodynamics Division, National Aerospace LaboratoriesCouncil of Scientific and Industrial Research (CSIR)BangaloreIndia

Personalised recommendations