Shock Waves

, Volume 28, Issue 1, pp 115–126 | Cite as

Exploration of the molecular basis of blast injury in a biofidelic model of traumatic brain injury

  • P. Thielen
  • T. Mehoke
  • J. Gleason
  • A. Iwaskiw
  • J. Paulson
  • A. Merkle
  • B. WesterEmail author
  • J. DymondEmail author
Original Article


Biological response to blast overpressure is complex and results in various and potentially non-concomitant acute and long-term deficits to exposed individuals. Clinical links between blast severity and injury outcomes remain elusive and have yet to be fully described, resulting in a critical inability to develop associated protection and mitigation strategies. Further, experimental models frequently fail to reproduce observed physiological phenomena and/or introduce artifacts that confound analysis and reproducibility. New models are required that employ consistent mechanical inputs, scale with biological analogs and known clinical data, and permit high-throughput examination of biological responses for a range of environmental and battlefield- relevant exposures. Here we describe a novel, biofidelic headform capable of integrating complex biological samples for blast exposure studies. We additionally demonstrate its utility in detecting acute transcriptional responses in the model organism Caenorhabditis elegans after exposure to blast overpressure. This approach enables correlation between mechanical exposure and biological outcome, permitting both the enhancement of existing surrogate and computational models and the high-throughput biofidelic testing of current and future protection systems.


Blast injury Traumatic brain injury Biofidelic headform Caenorhabditis elegans Transcriptomics 



We would like to thank Ian Wing and Ken Harclerode for their assistance in headform design, as well as Seneca Bessling, Nathan Boggs, Rozanne Mungai, Melissa Theodore, and Sherry Zhang for assistance during blast overpressure experiments. Figures were generated using MATLAB and Adobe Illustrator software. This work was enabled through the Johns Hopkins University Applied Physics Laboratory Independent Research and Development Program.

Author’s contributions Peter Thielen, Thomas Mehoke, Brock Wester, and Jessica Dymond designed and implemented experiments. Jeffery Paulson designed and executed the fabrication process for the headform. Thomas Mehoke performed data analysis for transcriptional profiling experiments, Julie Gleason and Alexander Iwaskiw analyzed data, and all authors contributed to the writing of the manuscript.


  1. 1.
    Faul, M., Xu, L., Wald, M.M., Coronado, V.G.: Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta, Georgia: Centers for Disease Control and Prevention, National Center for Injury. Prev. Control (2010)Google Scholar
  2. 2.
    Risdall, J.E., Menon, D.K.: Traumatic brain injury. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1562), 241–250 (2011). doi: 10.1098/rstb.2010.0230 CrossRefGoogle Scholar
  3. 3.
    Defense and Veterans Brain Injury Center. DoD Worldwide Numbers TBI. (2016)Google Scholar
  4. 4.
    Xiong, Y., Mahmood, A., Chopp, M.: Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14(2), 128–142 (2013). doi: 10.1038/nrn3407 CrossRefGoogle Scholar
  5. 5.
    Cernak, I.: Blast injuries and blast-induced neurotrauma: overview of pathophysiology and experimental knowledge models and findings. In: Kobeissy, F.H. (ed.) Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. CRC Press/Taylor & Francis, Boca Raton, FL (2015)Google Scholar
  6. 6.
    Morrison, B., Elkin, B., Dolle, J.P., Yarmush, M.: In vitro models of traumatic brain injury. Annu. Rev. Biomed. Eng. 13, 91–126 (2011). doi: 10.1146/annurev-bioeng-071910-124706
  7. 7.
    Dimitriadi, M., Hart, A.C.: Neurodegenerative disorders: Insights from the nematode Caenorhabditis elegans. Neurobiol. Dis. 40(1), 4–11 (2010). doi: 10.1016/j.nbd.2010.05.012 CrossRefGoogle Scholar
  8. 8.
    Consortium. Genome sequence of the Nematode C. elegans: A platform for investigating biology. Science 282(5396):2012–2018. (1998). doi: 10.1126/science.282.5396.2012
  9. 9.
    Kaletta, T., Hengartner, M.O.: Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5(5), 387–398 (2006). doi: 10.1038/Nrd2031 CrossRefGoogle Scholar
  10. 10.
    White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R Soc. Lond. 314(1165), 1–340 (1986). doi: 10.1098/rstb.1986.0056 CrossRefGoogle Scholar
  11. 11.
    Courtney, A., Courtney, M.: The complexity of biomechanics causing primary blast-induced traumatic brain injury: A review of potential mechanisms. Front. Neurol. 6, 221 (2015). doi: 10.3389/fneur.2015.00221
  12. 12.
    Merkle, A.C., Wing, I.D., Roberts, J.C.: Human surrogate head response to dynamic overpressure loading in protected and unprotected conditions. In: Herold, K.E., Vossoughi, J., Bentley, W.E. (eds.) 26th Southern Biomedical Engineering Conference SBEC 2010, April 30–May 2, 2010, College Park, Maryland, USA. Berlin, Heidelberg: Springer (2010), pp. 22–25. doi: 10.1007/978-3-642-14998-6_6
  13. 13.
    Merkle, A.C., Armiger, R.A., Ott, K.A., Wickwire, A. C., Iwaskiw, A. S., Voo, L. M., Carneal, C. M.: Characterizing brain mechanics during a two-phase response to dynamic overpressure loading. In: Injury Biomechanics Research, Proceedings of the Fortieth International Workshop, vol. 2012, pp. 1–13Google Scholar
  14. 14.
    Roberts, J.C., Harrigan, T.P., Ward, E.E., Taylor, T.M., Annett, M.S., Merkle, A.C.: Human head-neck computational model for assessing blast injury. J. Biomech. 45(16), 2899–2906 (2012). doi: 10.1016/j.jbiomech.2012.07.027 CrossRefGoogle Scholar
  15. 15.
    Carneal, C., Merkle, A., Zinn, D., Andrist, J., Clark, J., Alphonse, V., Ritzel, D., Carboni, M., DeCristofano, B., Cyganik, J., Maffeo M.: Development of a laboratory shock tube system for helmet blast overpressure performance assessment. In: Proceedings of the Personal Armour Systems Symposium. Amsterdam, Netherlands, pp. 632–641 (2016)Google Scholar
  16. 16.
    Eddings, M., Johnson, M., Gale, B.K.: Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18(6), 67001 (2008). doi: 10.1088/0960-1317/18/6/067001 CrossRefGoogle Scholar
  17. 17.
    Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., Ahmed, F.A.: The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41(2), 538–551 (2011). doi: 10.1016/j.nbd.2010.025
  18. 18.
    Bioinformatics, B.: Trim, Galore!.: (2016) Accessed 18 Oct 2017
  19. 19.
    Valenzuela, V., Onate, M., Hetz, C., Court, F.A..: Injury to the nervous system: A look into the ER. Brain Res. 1648(Pt B), 617–625 (2016). doi: 10.1016/j.brainres.2016.04.053
  20. 20.
    Larner, S.F., Hayes, R.L., Wang, K.K.W.: Unfolded protein response after neurotrauma. J. Neurotrauma 23(6), 807–829 (2006). doi: 10.1089/neu.2006.23.807 CrossRefGoogle Scholar
  21. 21.
    Hetz, C., Chevet, E., Oakes, S.A.: Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17(7), 829–838 (2015). doi: 10.1038/ncb3184 CrossRefGoogle Scholar
  22. 22.
    Onate, M., Catenaccio, A., Martinez, G., Armentano, D., Parsons, G., Kerr, B., Hetz, C.: Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury. Sci. Rep. 6, 21709 (2016). doi: 10.1038/srep21709
  23. 23.
    Krajewska, M., Xu, L., Xu, W., Krajewski, S., Kress, C.L., Cui, J., Yang, L., Irie, F., Yamaguchi, Y., Lipton, S.A., Reed, J.C.: Endoplasmic reticulum protein BI-1 modulates unfolded protein response signaling and protects against stroke and traumatic brain injury. Brain Res. 1370, 227–237 (2011). doi: 10.1016/j.brainres.2010.11.015
  24. 24.
    Dash, P.K., Hylin, M.J., Hood, K.N., Orsi, S.A., Zhao, J., Redell, J.B., Tsvetkov, A.S., Moore, A.N.: Inhibition of eukaryotic initiation factor 2 alpha phosphatase reduces tissue damage and improves learning and memory after experimental traumatic brain injury. J. Neurotrauma 32(20), 1608–1620 (2015). doi: 10.1089/neu.2014.3772
  25. 25.
    Begum, G., Yan, H.Q., Li, L., Singh, A., Dixon, C.E., Sun, D.: Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J. Neurosci. 34(10), 3743–3755 (2014). doi: 10.1523/JNEUROSCI.2872-13.2014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA

Personalised recommendations