Shock Waves

, Volume 28, Issue 1, pp 51–62 | Cite as

Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

  • E. Alay
  • M. Skotak
  • A. Misistia
  • N. ChandraEmail author
Original Article


Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure–time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.


Shock wave Peak overpressure Impulse Shock tube Static pressure Total pressure End effect Surrogate head Overpressure 



This work was supported by Grant No. 14059001 (total pressure measurements and quantification in 9 in. shock tube) entitled “Primary Blast Injury Criteria for Animal/Human TBI Models using Field Validated Shock Tubes” received from the US Army Medical Research and Materiel Command. The headform testing was performed using funds received from Award No. W91CRB-16-C-0025 (PEO Soldier) and is gratefully acknowledged.


  1. 1.
    Jaycox, L., Tanielian, T.L., Rand Corporation. National Security Research, D., Health, R., California Community, F., Rand, C.: Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery (2008). Accessed 18 Nov 2016
  2. 2.
    DePalma, R.G., Hoffman, S.W.: Combat Blast Related Traumatic Brain Injury (TBI): Decade of Recognition. Promise of Progress. Behavioural Brain Research, London (2016)Google Scholar
  3. 3.
    Mac Donald, C.L., Barber, J., Andre, J., Evans, N., Panks, C., Sun, S., Zalewski, K., Sanders, R.E., Temkin, N.: 5-Year imaging sequelae of concussive blast injury and relation to early clinical outcome. NeuroImage Clin. 14, 371–378 (2017). doi: 10.1016/j.nicl.2017.02.005 CrossRefGoogle Scholar
  4. 4.
    Heltemes, K.J., Holbrook, T.L., MacGregor, A.J., Galarneau, M.R.: Blast-related mild traumatic brain injury is associated with a decline in self-rated health amongst US military personnel. Inj. Int. J. Care Inj. 43(12), 1990–1995 (2012). doi: 10.1016/j.injury.2011.07.021 CrossRefGoogle Scholar
  5. 5.
    Ritzel, D., Parks, S., Roseveare, J., Rude, G., Sawyer, T.: Experimental blast simulation for injury studies. RTO-MP-HFM-207. Paper Presented at the RTO Human Factors and Medicine Panel (HFM) Symposium, pp. 3–5, Halifax, October 2011Google Scholar
  6. 6.
    Hyde, D.W.: ConWep: Conventional Weapon Effects (software) (1991)Google Scholar
  7. 7.
    Kuriakose, M., Skotak, M., Misistia, A., Kahali, S., Sundaramurthy, A., Chandra, N.: Tailoring the blast exposure conditions in the shock tube for generating pure, primary shock waves: The end plate facilitates elimination of secondary loading of the specimen. PLoS ONE 11(9), e0161597 (2016). doi: 10.1371/journal.pone.0161597 CrossRefGoogle Scholar
  8. 8.
    Chandra, N., Ganpule, S., Kleinschmit, N., Feng, R., Holmberg, A., Sundaramurthy, A., Selvan, V., Alai, A.: Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves 22(5), 403–415 (2012). doi: 10.1007/s00193-012-0399-2 CrossRefGoogle Scholar
  9. 9.
    Pun, P.B., Kan, E.M., Salim, A., Li, Z., Ng, K.C., Moochhala, S.M., Ling, E.A., Tan, M.H., Lu, J.: Low level primary blast injury in rodent brain. Front Neurol. 2, 19 (2011). doi: 10.3389/fneur.2011.00019 CrossRefGoogle Scholar
  10. 10.
    Lu, J., Ng, K.C., Ling, G., Wu, J., Poon, D.J., Kan, E.M., Tan, M.H., Wu, Y.J., Li, P., Moochhala, S., Yap, E., Lee, L.K., Teo, M., Yeh, I.B., Sergio, D.M., Chua, F., Kumar, S.D., Ling, E.A.: Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J. Neurotrauma 29(7), 1434–1454 (2012). doi: 10.1089/neu.2010.1591 CrossRefGoogle Scholar
  11. 11.
    Shreffler, R., Christian, R.: Boundary disturbances in high-explosive shock tubes. J. Appl. Phys. 25(3), 324–331 (1954). doi: 10.1063/1.1721633 CrossRefGoogle Scholar
  12. 12.
    Freiwald, D.: Approximate blast wave theory and experimental data for shock trajectories in linear explosive-driven shock tubes. J. Appl. Phys. 43(5), 2224–2226 (1972). doi: 10.1063/1.1661479 CrossRefGoogle Scholar
  13. 13.
    Coates, P., Gaydon, A.: A simple shock tube with detonating driver gas. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1392, 18–32 (1965). doi: 10.1098/rspa.1965.0004 CrossRefGoogle Scholar
  14. 14.
    Olivier, H., Jiang, Z., Yu, H.R., Lu, F.K.: Detonation-driven shock tubes and tunnels. Prog. Astronaut. Aeronaut. 198, 135–203 (2002). doi: 10.2514/5.9781600866678.0135.0203 Google Scholar
  15. 15.
    Vieille, P.: Sur les discontinuités produites par la détente brusque de gaz comprimes. C. R. Acad. Sci. A 129, 1228–1230 (1899)Google Scholar
  16. 16.
    Fomin, N.A.: 110 Years of experiments on shock tubes. J. Eng. Phys. Thermophys. 83(6), 1118–1135 (2010). doi: 10.1007/s10891-010-0437-9 CrossRefGoogle Scholar
  17. 17.
    Richmond, D.R., Damon, E.G., Fletcher, E.R., Bowen, I.G., White, C.S.: The relationship between selected blast-wave parameters and the response of mammals exposed to air blast. Ann. N. Y. Acad. Sci. 152(1), 103–121 (1968). doi: 10.1111/j.1749-6632.1968.tb11970.x CrossRefGoogle Scholar
  18. 18.
    Stuhmiller, J.H.: Blast Injury: Translating Research into Operational Medicine. United States Dept. of Defense (2008)Google Scholar
  19. 19.
    Kobeissy, F.H., Mondello, S., Tumer, N., Toklu, H.Z., Whidden, M.A., Kirichenko, N., Zhang, Z., Prima, V., Yassin, W., Namas, C., Anagli, J., Svetlov, S., Wang, K.K.W.: Assessing neuro-systemic and behavioral components in the pathophysiology of blast-related brain injury. Front. Neurol. 4, 186 (2013). doi: 10.3389/fneur.2013.00186 CrossRefGoogle Scholar
  20. 20.
    Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.A.: Blast testing issues and TBI: Experimental models that lead to wrong conclusions. Front. Neurol. 6, 72 (2015). doi: 10.3389/fneur.2015.00072 CrossRefGoogle Scholar
  21. 21.
    Friedlander, R.G.: The diffraction of sound pulses: 1. Diffraction by a semi-infinite plane. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 186(1006), 322–344 (1946). doi: 10.1098/rspa.1946.0046 Google Scholar
  22. 22.
    Kinney, G.F., Graham, K.J.: Explosive Shocks in Air, 2nd (edn.) Springer Science. Business Media, Heidelberg (1985). doi: 10.1007/978-3-642-86682-1
  23. 23.
    Glasstone, S., Dolan, P.J.: The Effects of Nuclear Weapons. Prepared and published by the US Dept. of Defense and the US Dept. of Energy, Washington (1977). Accessed from Accessed 27 Sept 2017
  24. 24.
    Pakdaman, S., Garcia, M., Teh, E., Lincoln, D., Trivedi, M., Alves, M., Johansen, C.: Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel. Shock Waves 26, 799–813 (2016). doi: 10.1007/s00193-016-0628-1 CrossRefGoogle Scholar
  25. 25.
    Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.: Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front Neurol. 6, 72 (2015). doi: 10.3389/fneur.2015.00072 CrossRefGoogle Scholar
  26. 26.
    Elder Jr., F., De Haas, N.: Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J. Appl. Phys. 23(10), 1065–1069 (1952). doi: 10.1063/1.1701987 CrossRefGoogle Scholar
  27. 27.
    Ganpule, S., Alai, A., Plougonven, E., Chandra, N.: Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech. Model. Mechanobiol. 12(3), 511–531 (2013). doi: 10.1007/s10237-012-0421-8
  28. 28.
    Ganpule, S., Gu, L., Alai, A., Chandra, N.: Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput. Methods Biomech. Biomed. Eng. 15, 1233–1244 (2012). doi: 10.1080/10255842.2011.597353 CrossRefGoogle Scholar
  29. 29.
    Sundaramurthy, A., Alai, A., Ganpule, S., Holmberg, A., Plougonven, E., Chandra, N.: Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model. J. Neurotrauma 29(13), 2352–2364 (2012). doi: 10.1089/neu.2012.2413 CrossRefGoogle Scholar
  30. 30.
    Gullotti, D.M., Beamer, M., Panzer, M.B., Chen, Y.C., Patel, T.P., Yu, A., Jaumard, N., Winkelstein, B., Bass, C.R., Morrison, B., Meaney, D.F.: Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury. J. Biomech. Eng. 136(9), 091004 (2014). doi: 10.1115/1.4027873 CrossRefGoogle Scholar
  31. 31.
    Shridharani, J.K., Wood, G.W., Panzer, M.B., Capehart, B.P., Nyein, M.K., Radovitzky, R.A., Bass, C.R.: Porcine head response to blast. Front Neurol. 3, 70 (2012). doi: 10.3389/fneur.2012.00070 CrossRefGoogle Scholar
  32. 32.
    Arakeri, J., Das, D., Krothapalli, A., Lourenco, L.: Vortex ring formation at the open end of a shock tube: A particle image velocimetry study. Phys. Fluids 16(4), 1008–1019 (2004). doi: 10.1063/1.1649339 CrossRefzbMATHGoogle Scholar
  33. 33.
    Zare-Behtash, H., Kontis, K., Gongora-Orozco, N.: Experimental investigations of compressible vortex loops. Phys. Fluids 20(12), 126105 (2008). doi: 10.1063/1.3054151 CrossRefzbMATHGoogle Scholar
  34. 34.
    Desmoulin, G.T., Dionne, J.P.: Blast-induced neurotrauma: Surrogate use, loading mechanisms, and cellular responses. J. Trauma 67(5), 1113–1122 (2009). doi: 10.1097/TA.0b013e3181bb8e84 CrossRefGoogle Scholar
  35. 35.
    Skotak, M., Wang, F., Alai, A., Holmberg, A., Harris, S., Switzer, R.C., Chandra, N.: Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures. J. Neurotrauma 30(13), 1147–1160 (2013). doi: 10.1089/neu.2012.2652 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations