Skip to main content

The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading

Abstract

The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2–6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Faul, M., Xu, L., Wald, M.M., Coronado, V.: Traumatic brain injury in the United States. National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA (2010)

  2. Defense and Veterans Brain Injury Center: DoD Worldwide Numbers for TBI. http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi. Accessed 29 Aug 2017

  3. Galarneau, M.R., Woodruff, S.I., Dye, J.L., Mohrle, C.R., Wade, A.L.: Traumatic brain injury during Operation Iraqi Freedom: findings from the United States Navy–Marine Corps Combat Trauma Registry. J. Neurosurg. 108, 950–957 (2008). doi:10.3171/JNS/2008/108/5/0950

  4. Wojcik, B.E., Stein, C.R., Bagg, K., Humphrey, R.J., Orosco, J.: Traumatic brain injury hospitalizations of US Army soldiers deployed to Afghanistan and Iraq. Am. J. Prev. Med. 38(1), S108–S116 (2010). doi:10.1016/j.amepre.2009.10.006

    Article  Google Scholar 

  5. Bass, C.R., Panzer, M.B., Rafaels, K.A., Wood, G., Shridharani, J., Capehart, B.: Brain injuries from blast. Ann. Biomed. Eng. 40(1), 185–202 (2012). doi:10.1007/s10439-011-0424-0

    Article  Google Scholar 

  6. Gupta, R.K., Przekwas, A.: Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4, 59 (2013). doi:10.3389/fneur.2013.00059

    Article  Google Scholar 

  7. Courtney, A., Courtney, M.: The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Front. Neurol. 6, 221 (2015). doi:10.3389/fneur.2015.00221

    Article  Google Scholar 

  8. Chavko, M., Koller, W.A., Prusaczyk, W.K., McCarron, R.M.: Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods 159(2), 277–281 (2007). doi:10.1016/j.jneumeth.2006.07.018

    Article  Google Scholar 

  9. Säljö, A., Arrhén, F., Bolouri, H., Mayorga, M., Hamberger, A.: Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J. Neurotrauma 25(12), 1397–1406 (2008). doi:10.1089/neu.2008.0602

    Article  Google Scholar 

  10. Shridharani, J., Wood, G.W., Panzer, M.B., Capehart, B.P., Nyein, M., Radovitzky, R.A., Bass, C.R.D.: Porcine head response to blast. Front. Neurol. 3, 70 (2012). doi:10.3389/fneur.2012.00070

    Article  Google Scholar 

  11. Merkle, A., Wing, I., Carneal, C.: Effect of helmet systems on the two-phased brain response to blast loading. In: Personal Armour Systems Symposium. Nuremberg (2012)

  12. Merkle, A., Wing, I., Armiger, R., Carkhuff, B., Roberts, J.: Development of a human head physical surrogate model for investigating blast injury. In: ASME 2009 International Mechanical Engineering Congress and Exposition 2009, pp. 91–93. American Society of Mechanical Engineers (2009). doi:10.1115/IMECE2009-11807

  13. Merkle, A., Wing, I., Carneal, K.: The mechanics of brain motion during free-field blast loading. In: ASME 2012 Summer Bioengineering Conference 2012, pp. 663–664. American Society of Mechanical Engineers (2012). doi:10.1115/SBC2012-80880

  14. Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., Ahmed, F.A.: The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41(2), 538–551 (2011). doi:10.1016/j.nbd.2010.10.025

    Article  Google Scholar 

  15. Bir, C.: Measuring Blast-Related Intracranial Pressure within the Human Head. DTIC Document Accession Number ADA547306 (2011)

  16. Richmond, D.R., Damon, E.G., Fletcher, E.R., Bowen, I.G., White, C.S.: The relationship between selected blast-wave parameters and the response of mammals exposed to air blast. Ann. N. Y. Acad. Sci. 152(1), 103–121 (1968). doi:10.1111/j.1749-6632.1968.tb11970.x

    Article  Google Scholar 

  17. Ling, G., Bandak, F., Armonda, R., Grant, G., Ecklund, J.: Explosive blast neurotrauma. J. Neurotrauma 26(6), 815–825 (2009). doi:10.1089/neu.2007.0484

    Article  Google Scholar 

  18. Elder, G.A., Dorr, N.P., De Gasperi, R., Gama Sosa, M.A., Shaughness, M.C., Maudlin-Jeronimo, E., Hall, A.A., McCarron, R.M., Ahlers, S.T.: Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J. Neurotrauma 29(16), 2564–2575 (2012). doi:10.1089/neu.2012.2510

    Article  Google Scholar 

  19. Stemper, B.D., Shah, A.S., Budde, M.D., Olsen, C.M., Glavaski-Joksimovic, A., Kurpad, S.N., McCrea, M., Pintar, F.A.: Behavioral outcomes differ between rotational acceleration and blast mechanisms of mild traumatic brain injury. Front. Neurol. 7, 31 (2016). doi:10.3389/fneur.2016.00031

    Article  Google Scholar 

  20. Shively, S.B., Horkayne-Szakaly, I., Jones, R.V., Kelly, J.P., Armstrong, R.C., Perl, D.P.: Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 15(9), 944–953 (2016). doi:10.1016/S1474-4422(16)30057-6

    Article  Google Scholar 

  21. Bailey, Z.S., Hubbard, W.B., Vandevord, P.J.: Cellular mechanisms and behavioral outcomes in blast-induced neurotrauma: comparing experimental setups. Inj. Models Cent. Nerv. Syst. Methods Protoc. (2016). doi:10.1007/978-1-4939-3816-2_8

  22. Morrison III, B., Cater, H.L., Wang, C.C., Thomas, F.C.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47, 93 (2003)

    Google Scholar 

  23. Ott, K.A., Armiger, R., Wickwire, A., Iwaskiw, A., Merkle, A.C.: Determination of simple shear material properties of the brain at high strain rates. In: Dynamic Behavior of Materials, Volume 1: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics 2012, p. 139. Springer (2012). doi:10.1007/978-1-4614-4238-7_18

  24. Anderson, R., Brown, C., Scott, G., Blumbergs, P., Finnie, J., McLean, A., Jones, N.: Biomechanics of a sheep model of axonal injury. In: Proceedings of the International IRCOBI Conference on the Biomechanics of Impact 1997, pp. 181–192 (1997)

  25. Shreiber, D.I., Bain, A.C., Meaney, D.F.: In vivo thresholds for mechanical injury to the blood-brain barrier. SAE Technical Paper 973335 (1997). doi:10.4271/973335

  26. Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. SAE Technical Paper 770922 (1977). doi:10.4271/770922

  27. Hardy, W.N., Foster, C.D., Mason, M.J., Yang, K.H., King, A.I., Tashman, S.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45, 337–368 (2001)

    Google Scholar 

  28. Hardy, W.N., Mason, M.J., Foster, C.D., Shah, C.S., Kopacz, J.M., Yang, K.H., King, A.I., Bishop, J., Bey, M., Anderst, W., Tashman, S.: A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51, 17 (2007)

    Google Scholar 

  29. Ganpule, S.G.: Mechanics of blast loading on post-mortem human and surrogate heads in the study of Traumatic Brain Injury (TBI) using experimental and computational approaches. PhD Thesis, University of Nebraska - Lincoln (2013)

  30. Salzar, R.S., Treichler, D., Wardlaw, A., Weiss, G., Goeller, J.: Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads. J. Neurotrauma 34(8), 1589–1602 (2017). doi:10.1089/neu.2016.4600

    Article  Google Scholar 

  31. Roberts, J., Harrigan, T., Ward, E., Nicolella, D., Francis, L., Eliason, T., Merkle, A.: The influence of neck kinematics on brain pressures and strains under blast loading. In: ASME 2013 International Mechanical Engineering Congress and Exposition 2013, Paper No. IMECE2013-64821, pp. V03AT03A013. American Society of Mechanical Engineers (2013). doi:10.1115/IMECE2013-64821

  32. Tan, X., Kannan, R., Przekwas, A.J., Ott, K., Harrigan, T., Roberts, J., Merkle, A.: An enhanced articulated human body model under C4 blast loadings. In: ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX 2012, Paper No. IMECE2012-89067, pp. 821–828. American Society of Mechanical Engineers (2012). doi:10.1115/IMECE2012-89067

  33. Tan, X., Przekwas, A.J., Rule, G., Iyer, K., Ott, K., Merkle, A.: Modeling articulated human body dynamics under a representative blast loading. In: ASME 2011 International Mechanical Engineering Congress and Exposition 2011, Paper No. IMECE2011-64331, pp. 71–78. American Society of Mechanical Engineers (2011). doi:10.1115/IMECE2011-64331

  34. Lockhart, P., Cronin, D., Williams, K., Ouellet, S.: Investigation of head response to blast loading. J. Trauma 70(2), E29–E36 (2010). doi:10.1097/TA.0b013e3181de3f4b

    Article  Google Scholar 

  35. Haladuick, T.N., Cronin, D.S., Lockhart, P.A., Singh, D., Bouamoul, A., Dionne, J.-P., Ouellet, S.: Head kinematics resulting from simulated blast loading scenarios. DTIC Document Accession Number ADA584124 (2012)

  36. Sielicki, P.W., Gajewski, T.: Human body motion under explosion: numerical analysis of blast and personal safety. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece (2016)

  37. Pudenz, R.H., Shelden, C.H.: The lucite calvarium—a method for direct observation of the brain: II. Cranial trauma and brain movement. J. Neurosurg. 3(6), 487–505 (1946). doi:10.3171/jns.1946.3.6.0487

    Article  Google Scholar 

  38. Margulies, S.S., Thibault, L.E., Gennarelli, T.A.: Physical model simulations of brain injury in the primate. J. Biomech. 23(8), 823–836 (1990). doi:10.1016/0021-9290(90)90029-3

    Article  Google Scholar 

  39. Meaney, D.F., Smith, D.H., Shreiber, D.I., Bain, A.C., Miller, R.T., Ross, D.T., Gennarelli, T.A.: Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma 12(4), 689–694 (1995). doi:10.1089/neu.1995.12.689

    Article  Google Scholar 

  40. Bayly, P., Ji, S., Song, S., Okamoto, R., Massouros, P., Genin, G.: Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J. Biomech. Eng. 126(4), 523–528 (2004). doi:10.1115/1.1785811

    Article  Google Scholar 

  41. Merkle, A., Wing, I., Roberts, J.: Human surrogate head response to dynamic overpressure loading in protected and unprotected conditions. In: 26th Southern Biomedical Engineering Conference SBEC 2010, April 30–May 2 2010, College Park, Maryland, USA 2010, pp. 22–25. Springer (2010). doi:10.1007/978-3-642-14998-6_6

  42. Fournier, E., Sullivan, D., Bayne, T., Shewchenko, N., Martineau, L.: Blast headform development. DRDC–Valcartier, CR 2007-234 (2007)

  43. Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.: Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front. Neurol. 6, 72 (2015). doi:10.3389/fneur.2015.00072

    Article  Google Scholar 

  44. Sawyer, T.W., Wang, Y., Ritzel, D.V., Josey, T., Villanueva, M., Shei, Y., Nelson, P., Hennes, G., Weiss, T., Vair, C.: High-fidelity simulation of primary blast: direct effects on the head. J. Neurotrauma 33(13), 1181–1193 (2016). doi:10.1089/neu.2015.3914

    Article  Google Scholar 

  45. Armiger, R.S., Otake, Y., Iwaskiw, A.S., Wickwire, A.C., Ott, K.A., Voo, L.M., Armand, M., Merkle, A.C.: Biomechanical response of blast loading to the head using 2D-3D cineradiographic registration. In: Mechanics of Biological Systems and Materials, Volume 4, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 127–134. Springer (2014). doi:10.1007/978-3-319-00777-9_18

  46. Armand, M., Armiger, R., Mendat, D., Lepistö, J., Tallroth, K., Mears, S., Belkoff, S., Taylor, R., Murphy, R., Chintalapani, G.: Computer-assisted orthopedic surgery with real-time biomechanics. J. Hopkins APL Tech. Dig. 28(3), 214–215 (2010)

    Google Scholar 

  47. Walker, L.B., Harris, E.H., Pontius, U.R.: Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. SAE Technical Paper 730985 (1973). doi:10.4271/730985

  48. Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Gr. 21(4), 145–152 (1987). doi:10.1145/37402.37420

    Article  MathSciNet  Google Scholar 

  49. Varas, J.M., Philippens, M., Meijer, S., Van Den Berg, A., Sibma, P., Van Bree, J., De Vries, D.: Physics of IED blast shock tube simulations for mTBI research. Front. Neurol. 2, 58 (2011). doi:10.3389/fneur.2011.00058

    Google Scholar 

  50. Bowen, I.G., Fletcher, E.R., Richmond, D.R.: Estimate of man’s tolerance to the direct effects of air blast. Defense Atomic Support Agency, Washington, D.C., pp. 1–44 (1968)

  51. Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng. 126(2), 226–236 (2004). doi:10.1115/1.1691446

    Google Scholar 

  52. Ward, C., Chan, M., Nahum, A.: Intracranial pressure—a brain injury criterion. In: SAE Technical Paper 801304 (1980). doi:10.4271/801304

  53. Panzer, M.B., Myers, B.S., Capehart, B.P., Bass, C.R.: Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40(7), 1530–1544 (2012). doi:10.1007/s10439-012-0519-2

    Article  Google Scholar 

  54. Kraft, R.H., Dagro, A.M.: Design and implementation of a numerical technique to inform anisotropic hyperelastic finite element models using diffusion-weighted imaging. ARL-TR-5796, Army Research Laboratory, Aberdeen Proving Ground (2011)

  55. Yang, B., Tse, K.-M., Chen, N., Tan, L.-B., Zheng, Q.-Q., Yang, H.-M., Hu, M., Pan, G., Lee, H.-P.: Development of a finite element head model for the study of impact head injury. Biomed. Res. Int. 2014, Article 408278 (2014). doi:10.1155/2014/408278

  56. Singh, D., Cronin, D.S., Lockhart, P.A., Haladuick, T.N., Bouamoul, A., Dionne, J.-P.: Evaluation of head response to blast using sagittal and transverse finite element head models. DTIC Document Accession Number ADA587556 (2012)

  57. Tashman, S., Anderst, W.: In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng. 125(2), 238–245 (2003). doi:10.1115/1.1559896

    Google Scholar 

Download references

Acknowledgements

This effort was funded by, and in accordance with, the US Army Medical Research and Materiel Command Office of Research Protections, contract # W81XWH-09-2-0168. The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. The content included in this work does not necessarily reflect the position or policy of the US government. The authors would like to acknowledge Howard Conner for fabrication support, Brock Wester for testing support, and Joan Murphy and Jill Koehler for editorial contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Iwaskiw.

Additional information

Communicated by O. Petel and S. Ouellet.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaskiw, A.S., Ott, K.A., Armiger, R.S. et al. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading. Shock Waves 28, 63–83 (2018). https://doi.org/10.1007/s00193-017-0759-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0759-z

Keywords