Abstract
The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2–6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.
This is a preview of subscription content, access via your institution.














References
Faul, M., Xu, L., Wald, M.M., Coronado, V.: Traumatic brain injury in the United States. National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA (2010)
Defense and Veterans Brain Injury Center: DoD Worldwide Numbers for TBI. http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi. Accessed 29 Aug 2017
Galarneau, M.R., Woodruff, S.I., Dye, J.L., Mohrle, C.R., Wade, A.L.: Traumatic brain injury during Operation Iraqi Freedom: findings from the United States Navy–Marine Corps Combat Trauma Registry. J. Neurosurg. 108, 950–957 (2008). doi:10.3171/JNS/2008/108/5/0950
Wojcik, B.E., Stein, C.R., Bagg, K., Humphrey, R.J., Orosco, J.: Traumatic brain injury hospitalizations of US Army soldiers deployed to Afghanistan and Iraq. Am. J. Prev. Med. 38(1), S108–S116 (2010). doi:10.1016/j.amepre.2009.10.006
Bass, C.R., Panzer, M.B., Rafaels, K.A., Wood, G., Shridharani, J., Capehart, B.: Brain injuries from blast. Ann. Biomed. Eng. 40(1), 185–202 (2012). doi:10.1007/s10439-011-0424-0
Gupta, R.K., Przekwas, A.: Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4, 59 (2013). doi:10.3389/fneur.2013.00059
Courtney, A., Courtney, M.: The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Front. Neurol. 6, 221 (2015). doi:10.3389/fneur.2015.00221
Chavko, M., Koller, W.A., Prusaczyk, W.K., McCarron, R.M.: Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods 159(2), 277–281 (2007). doi:10.1016/j.jneumeth.2006.07.018
Säljö, A., Arrhén, F., Bolouri, H., Mayorga, M., Hamberger, A.: Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J. Neurotrauma 25(12), 1397–1406 (2008). doi:10.1089/neu.2008.0602
Shridharani, J., Wood, G.W., Panzer, M.B., Capehart, B.P., Nyein, M., Radovitzky, R.A., Bass, C.R.D.: Porcine head response to blast. Front. Neurol. 3, 70 (2012). doi:10.3389/fneur.2012.00070
Merkle, A., Wing, I., Carneal, C.: Effect of helmet systems on the two-phased brain response to blast loading. In: Personal Armour Systems Symposium. Nuremberg (2012)
Merkle, A., Wing, I., Armiger, R., Carkhuff, B., Roberts, J.: Development of a human head physical surrogate model for investigating blast injury. In: ASME 2009 International Mechanical Engineering Congress and Exposition 2009, pp. 91–93. American Society of Mechanical Engineers (2009). doi:10.1115/IMECE2009-11807
Merkle, A., Wing, I., Carneal, K.: The mechanics of brain motion during free-field blast loading. In: ASME 2012 Summer Bioengineering Conference 2012, pp. 663–664. American Society of Mechanical Engineers (2012). doi:10.1115/SBC2012-80880
Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., Ahmed, F.A.: The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41(2), 538–551 (2011). doi:10.1016/j.nbd.2010.10.025
Bir, C.: Measuring Blast-Related Intracranial Pressure within the Human Head. DTIC Document Accession Number ADA547306 (2011)
Richmond, D.R., Damon, E.G., Fletcher, E.R., Bowen, I.G., White, C.S.: The relationship between selected blast-wave parameters and the response of mammals exposed to air blast. Ann. N. Y. Acad. Sci. 152(1), 103–121 (1968). doi:10.1111/j.1749-6632.1968.tb11970.x
Ling, G., Bandak, F., Armonda, R., Grant, G., Ecklund, J.: Explosive blast neurotrauma. J. Neurotrauma 26(6), 815–825 (2009). doi:10.1089/neu.2007.0484
Elder, G.A., Dorr, N.P., De Gasperi, R., Gama Sosa, M.A., Shaughness, M.C., Maudlin-Jeronimo, E., Hall, A.A., McCarron, R.M., Ahlers, S.T.: Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J. Neurotrauma 29(16), 2564–2575 (2012). doi:10.1089/neu.2012.2510
Stemper, B.D., Shah, A.S., Budde, M.D., Olsen, C.M., Glavaski-Joksimovic, A., Kurpad, S.N., McCrea, M., Pintar, F.A.: Behavioral outcomes differ between rotational acceleration and blast mechanisms of mild traumatic brain injury. Front. Neurol. 7, 31 (2016). doi:10.3389/fneur.2016.00031
Shively, S.B., Horkayne-Szakaly, I., Jones, R.V., Kelly, J.P., Armstrong, R.C., Perl, D.P.: Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 15(9), 944–953 (2016). doi:10.1016/S1474-4422(16)30057-6
Bailey, Z.S., Hubbard, W.B., Vandevord, P.J.: Cellular mechanisms and behavioral outcomes in blast-induced neurotrauma: comparing experimental setups. Inj. Models Cent. Nerv. Syst. Methods Protoc. (2016). doi:10.1007/978-1-4939-3816-2_8
Morrison III, B., Cater, H.L., Wang, C.C., Thomas, F.C.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47, 93 (2003)
Ott, K.A., Armiger, R., Wickwire, A., Iwaskiw, A., Merkle, A.C.: Determination of simple shear material properties of the brain at high strain rates. In: Dynamic Behavior of Materials, Volume 1: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics 2012, p. 139. Springer (2012). doi:10.1007/978-1-4614-4238-7_18
Anderson, R., Brown, C., Scott, G., Blumbergs, P., Finnie, J., McLean, A., Jones, N.: Biomechanics of a sheep model of axonal injury. In: Proceedings of the International IRCOBI Conference on the Biomechanics of Impact 1997, pp. 181–192 (1997)
Shreiber, D.I., Bain, A.C., Meaney, D.F.: In vivo thresholds for mechanical injury to the blood-brain barrier. SAE Technical Paper 973335 (1997). doi:10.4271/973335
Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. SAE Technical Paper 770922 (1977). doi:10.4271/770922
Hardy, W.N., Foster, C.D., Mason, M.J., Yang, K.H., King, A.I., Tashman, S.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45, 337–368 (2001)
Hardy, W.N., Mason, M.J., Foster, C.D., Shah, C.S., Kopacz, J.M., Yang, K.H., King, A.I., Bishop, J., Bey, M., Anderst, W., Tashman, S.: A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51, 17 (2007)
Ganpule, S.G.: Mechanics of blast loading on post-mortem human and surrogate heads in the study of Traumatic Brain Injury (TBI) using experimental and computational approaches. PhD Thesis, University of Nebraska - Lincoln (2013)
Salzar, R.S., Treichler, D., Wardlaw, A., Weiss, G., Goeller, J.: Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads. J. Neurotrauma 34(8), 1589–1602 (2017). doi:10.1089/neu.2016.4600
Roberts, J., Harrigan, T., Ward, E., Nicolella, D., Francis, L., Eliason, T., Merkle, A.: The influence of neck kinematics on brain pressures and strains under blast loading. In: ASME 2013 International Mechanical Engineering Congress and Exposition 2013, Paper No. IMECE2013-64821, pp. V03AT03A013. American Society of Mechanical Engineers (2013). doi:10.1115/IMECE2013-64821
Tan, X., Kannan, R., Przekwas, A.J., Ott, K., Harrigan, T., Roberts, J., Merkle, A.: An enhanced articulated human body model under C4 blast loadings. In: ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX 2012, Paper No. IMECE2012-89067, pp. 821–828. American Society of Mechanical Engineers (2012). doi:10.1115/IMECE2012-89067
Tan, X., Przekwas, A.J., Rule, G., Iyer, K., Ott, K., Merkle, A.: Modeling articulated human body dynamics under a representative blast loading. In: ASME 2011 International Mechanical Engineering Congress and Exposition 2011, Paper No. IMECE2011-64331, pp. 71–78. American Society of Mechanical Engineers (2011). doi:10.1115/IMECE2011-64331
Lockhart, P., Cronin, D., Williams, K., Ouellet, S.: Investigation of head response to blast loading. J. Trauma 70(2), E29–E36 (2010). doi:10.1097/TA.0b013e3181de3f4b
Haladuick, T.N., Cronin, D.S., Lockhart, P.A., Singh, D., Bouamoul, A., Dionne, J.-P., Ouellet, S.: Head kinematics resulting from simulated blast loading scenarios. DTIC Document Accession Number ADA584124 (2012)
Sielicki, P.W., Gajewski, T.: Human body motion under explosion: numerical analysis of blast and personal safety. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece (2016)
Pudenz, R.H., Shelden, C.H.: The lucite calvarium—a method for direct observation of the brain: II. Cranial trauma and brain movement. J. Neurosurg. 3(6), 487–505 (1946). doi:10.3171/jns.1946.3.6.0487
Margulies, S.S., Thibault, L.E., Gennarelli, T.A.: Physical model simulations of brain injury in the primate. J. Biomech. 23(8), 823–836 (1990). doi:10.1016/0021-9290(90)90029-3
Meaney, D.F., Smith, D.H., Shreiber, D.I., Bain, A.C., Miller, R.T., Ross, D.T., Gennarelli, T.A.: Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma 12(4), 689–694 (1995). doi:10.1089/neu.1995.12.689
Bayly, P., Ji, S., Song, S., Okamoto, R., Massouros, P., Genin, G.: Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J. Biomech. Eng. 126(4), 523–528 (2004). doi:10.1115/1.1785811
Merkle, A., Wing, I., Roberts, J.: Human surrogate head response to dynamic overpressure loading in protected and unprotected conditions. In: 26th Southern Biomedical Engineering Conference SBEC 2010, April 30–May 2 2010, College Park, Maryland, USA 2010, pp. 22–25. Springer (2010). doi:10.1007/978-3-642-14998-6_6
Fournier, E., Sullivan, D., Bayne, T., Shewchenko, N., Martineau, L.: Blast headform development. DRDC–Valcartier, CR 2007-234 (2007)
Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.: Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front. Neurol. 6, 72 (2015). doi:10.3389/fneur.2015.00072
Sawyer, T.W., Wang, Y., Ritzel, D.V., Josey, T., Villanueva, M., Shei, Y., Nelson, P., Hennes, G., Weiss, T., Vair, C.: High-fidelity simulation of primary blast: direct effects on the head. J. Neurotrauma 33(13), 1181–1193 (2016). doi:10.1089/neu.2015.3914
Armiger, R.S., Otake, Y., Iwaskiw, A.S., Wickwire, A.C., Ott, K.A., Voo, L.M., Armand, M., Merkle, A.C.: Biomechanical response of blast loading to the head using 2D-3D cineradiographic registration. In: Mechanics of Biological Systems and Materials, Volume 4, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 127–134. Springer (2014). doi:10.1007/978-3-319-00777-9_18
Armand, M., Armiger, R., Mendat, D., Lepistö, J., Tallroth, K., Mears, S., Belkoff, S., Taylor, R., Murphy, R., Chintalapani, G.: Computer-assisted orthopedic surgery with real-time biomechanics. J. Hopkins APL Tech. Dig. 28(3), 214–215 (2010)
Walker, L.B., Harris, E.H., Pontius, U.R.: Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. SAE Technical Paper 730985 (1973). doi:10.4271/730985
Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Gr. 21(4), 145–152 (1987). doi:10.1145/37402.37420
Varas, J.M., Philippens, M., Meijer, S., Van Den Berg, A., Sibma, P., Van Bree, J., De Vries, D.: Physics of IED blast shock tube simulations for mTBI research. Front. Neurol. 2, 58 (2011). doi:10.3389/fneur.2011.00058
Bowen, I.G., Fletcher, E.R., Richmond, D.R.: Estimate of man’s tolerance to the direct effects of air blast. Defense Atomic Support Agency, Washington, D.C., pp. 1–44 (1968)
Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng. 126(2), 226–236 (2004). doi:10.1115/1.1691446
Ward, C., Chan, M., Nahum, A.: Intracranial pressure—a brain injury criterion. In: SAE Technical Paper 801304 (1980). doi:10.4271/801304
Panzer, M.B., Myers, B.S., Capehart, B.P., Bass, C.R.: Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40(7), 1530–1544 (2012). doi:10.1007/s10439-012-0519-2
Kraft, R.H., Dagro, A.M.: Design and implementation of a numerical technique to inform anisotropic hyperelastic finite element models using diffusion-weighted imaging. ARL-TR-5796, Army Research Laboratory, Aberdeen Proving Ground (2011)
Yang, B., Tse, K.-M., Chen, N., Tan, L.-B., Zheng, Q.-Q., Yang, H.-M., Hu, M., Pan, G., Lee, H.-P.: Development of a finite element head model for the study of impact head injury. Biomed. Res. Int. 2014, Article 408278 (2014). doi:10.1155/2014/408278
Singh, D., Cronin, D.S., Lockhart, P.A., Haladuick, T.N., Bouamoul, A., Dionne, J.-P.: Evaluation of head response to blast using sagittal and transverse finite element head models. DTIC Document Accession Number ADA587556 (2012)
Tashman, S., Anderst, W.: In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng. 125(2), 238–245 (2003). doi:10.1115/1.1559896
Acknowledgements
This effort was funded by, and in accordance with, the US Army Medical Research and Materiel Command Office of Research Protections, contract # W81XWH-09-2-0168. The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. The content included in this work does not necessarily reflect the position or policy of the US government. The authors would like to acknowledge Howard Conner for fabrication support, Brock Wester for testing support, and Joan Murphy and Jill Koehler for editorial contributions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by O. Petel and S. Ouellet.
Rights and permissions
About this article
Cite this article
Iwaskiw, A.S., Ott, K.A., Armiger, R.S. et al. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading. Shock Waves 28, 63–83 (2018). https://doi.org/10.1007/s00193-017-0759-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00193-017-0759-z