Advertisement

Shock Waves

, Volume 28, Issue 1, pp 63–83 | Cite as

The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading

  • A. S. IwaskiwEmail author
  • K. A. Ott
  • R. S. Armiger
  • A. C. Wickwire
  • V. D. Alphonse
  • L. M. Voo
  • C. M. Carneal
  • A. C. Merkle
Original Article

Abstract

The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2–6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.

Keywords

Postmortem human surrogate Blast-induced traumatic brain injury Brain motion Intracranial pressure Short-duration dynamic overpressure Dynamic overpressure-induced kinematics Shock tube 

Notes

Acknowledgements

This effort was funded by, and in accordance with, the US Army Medical Research and Materiel Command Office of Research Protections, contract # W81XWH-09-2-0168. The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. The content included in this work does not necessarily reflect the position or policy of the US government. The authors would like to acknowledge Howard Conner for fabrication support, Brock Wester for testing support, and Joan Murphy and Jill Koehler for editorial contributions.

References

  1. 1.
    Faul, M., Xu, L., Wald, M.M., Coronado, V.: Traumatic brain injury in the United States. National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA (2010)Google Scholar
  2. 2.
    Defense and Veterans Brain Injury Center: DoD Worldwide Numbers for TBI. http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi. Accessed 29 Aug 2017
  3. 3.
    Galarneau, M.R., Woodruff, S.I., Dye, J.L., Mohrle, C.R., Wade, A.L.: Traumatic brain injury during Operation Iraqi Freedom: findings from the United States Navy–Marine Corps Combat Trauma Registry. J. Neurosurg. 108, 950–957 (2008). doi: 10.3171/JNS/2008/108/5/0950
  4. 4.
    Wojcik, B.E., Stein, C.R., Bagg, K., Humphrey, R.J., Orosco, J.: Traumatic brain injury hospitalizations of US Army soldiers deployed to Afghanistan and Iraq. Am. J. Prev. Med. 38(1), S108–S116 (2010). doi: 10.1016/j.amepre.2009.10.006 CrossRefGoogle Scholar
  5. 5.
    Bass, C.R., Panzer, M.B., Rafaels, K.A., Wood, G., Shridharani, J., Capehart, B.: Brain injuries from blast. Ann. Biomed. Eng. 40(1), 185–202 (2012). doi: 10.1007/s10439-011-0424-0 CrossRefGoogle Scholar
  6. 6.
    Gupta, R.K., Przekwas, A.: Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4, 59 (2013). doi: 10.3389/fneur.2013.00059 CrossRefGoogle Scholar
  7. 7.
    Courtney, A., Courtney, M.: The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Front. Neurol. 6, 221 (2015). doi: 10.3389/fneur.2015.00221 CrossRefGoogle Scholar
  8. 8.
    Chavko, M., Koller, W.A., Prusaczyk, W.K., McCarron, R.M.: Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods 159(2), 277–281 (2007). doi: 10.1016/j.jneumeth.2006.07.018 CrossRefGoogle Scholar
  9. 9.
    Säljö, A., Arrhén, F., Bolouri, H., Mayorga, M., Hamberger, A.: Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J. Neurotrauma 25(12), 1397–1406 (2008). doi: 10.1089/neu.2008.0602 CrossRefGoogle Scholar
  10. 10.
    Shridharani, J., Wood, G.W., Panzer, M.B., Capehart, B.P., Nyein, M., Radovitzky, R.A., Bass, C.R.D.: Porcine head response to blast. Front. Neurol. 3, 70 (2012). doi: 10.3389/fneur.2012.00070 CrossRefGoogle Scholar
  11. 11.
    Merkle, A., Wing, I., Carneal, C.: Effect of helmet systems on the two-phased brain response to blast loading. In: Personal Armour Systems Symposium. Nuremberg (2012)Google Scholar
  12. 12.
    Merkle, A., Wing, I., Armiger, R., Carkhuff, B., Roberts, J.: Development of a human head physical surrogate model for investigating blast injury. In: ASME 2009 International Mechanical Engineering Congress and Exposition 2009, pp. 91–93. American Society of Mechanical Engineers (2009). doi: 10.1115/IMECE2009-11807
  13. 13.
    Merkle, A., Wing, I., Carneal, K.: The mechanics of brain motion during free-field blast loading. In: ASME 2012 Summer Bioengineering Conference 2012, pp. 663–664. American Society of Mechanical Engineers (2012). doi: 10.1115/SBC2012-80880
  14. 14.
    Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., Ahmed, F.A.: The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41(2), 538–551 (2011). doi: 10.1016/j.nbd.2010.10.025 CrossRefGoogle Scholar
  15. 15.
    Bir, C.: Measuring Blast-Related Intracranial Pressure within the Human Head. DTIC Document Accession Number ADA547306 (2011)Google Scholar
  16. 16.
    Richmond, D.R., Damon, E.G., Fletcher, E.R., Bowen, I.G., White, C.S.: The relationship between selected blast-wave parameters and the response of mammals exposed to air blast. Ann. N. Y. Acad. Sci. 152(1), 103–121 (1968). doi: 10.1111/j.1749-6632.1968.tb11970.x CrossRefGoogle Scholar
  17. 17.
    Ling, G., Bandak, F., Armonda, R., Grant, G., Ecklund, J.: Explosive blast neurotrauma. J. Neurotrauma 26(6), 815–825 (2009). doi: 10.1089/neu.2007.0484 CrossRefGoogle Scholar
  18. 18.
    Elder, G.A., Dorr, N.P., De Gasperi, R., Gama Sosa, M.A., Shaughness, M.C., Maudlin-Jeronimo, E., Hall, A.A., McCarron, R.M., Ahlers, S.T.: Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J. Neurotrauma 29(16), 2564–2575 (2012). doi: 10.1089/neu.2012.2510 CrossRefGoogle Scholar
  19. 19.
    Stemper, B.D., Shah, A.S., Budde, M.D., Olsen, C.M., Glavaski-Joksimovic, A., Kurpad, S.N., McCrea, M., Pintar, F.A.: Behavioral outcomes differ between rotational acceleration and blast mechanisms of mild traumatic brain injury. Front. Neurol. 7, 31 (2016). doi: 10.3389/fneur.2016.00031 CrossRefGoogle Scholar
  20. 20.
    Shively, S.B., Horkayne-Szakaly, I., Jones, R.V., Kelly, J.P., Armstrong, R.C., Perl, D.P.: Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 15(9), 944–953 (2016). doi: 10.1016/S1474-4422(16)30057-6 CrossRefGoogle Scholar
  21. 21.
    Bailey, Z.S., Hubbard, W.B., Vandevord, P.J.: Cellular mechanisms and behavioral outcomes in blast-induced neurotrauma: comparing experimental setups. Inj. Models Cent. Nerv. Syst. Methods Protoc. (2016). doi: 10.1007/978-1-4939-3816-2_8
  22. 22.
    Morrison III, B., Cater, H.L., Wang, C.C., Thomas, F.C.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47, 93 (2003)Google Scholar
  23. 23.
    Ott, K.A., Armiger, R., Wickwire, A., Iwaskiw, A., Merkle, A.C.: Determination of simple shear material properties of the brain at high strain rates. In: Dynamic Behavior of Materials, Volume 1: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics 2012, p. 139. Springer (2012). doi: 10.1007/978-1-4614-4238-7_18
  24. 24.
    Anderson, R., Brown, C., Scott, G., Blumbergs, P., Finnie, J., McLean, A., Jones, N.: Biomechanics of a sheep model of axonal injury. In: Proceedings of the International IRCOBI Conference on the Biomechanics of Impact 1997, pp. 181–192 (1997)Google Scholar
  25. 25.
    Shreiber, D.I., Bain, A.C., Meaney, D.F.: In vivo thresholds for mechanical injury to the blood-brain barrier. SAE Technical Paper 973335 (1997). doi: 10.4271/973335
  26. 26.
    Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. SAE Technical Paper 770922 (1977). doi: 10.4271/770922
  27. 27.
    Hardy, W.N., Foster, C.D., Mason, M.J., Yang, K.H., King, A.I., Tashman, S.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45, 337–368 (2001)Google Scholar
  28. 28.
    Hardy, W.N., Mason, M.J., Foster, C.D., Shah, C.S., Kopacz, J.M., Yang, K.H., King, A.I., Bishop, J., Bey, M., Anderst, W., Tashman, S.: A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51, 17 (2007)Google Scholar
  29. 29.
    Ganpule, S.G.: Mechanics of blast loading on post-mortem human and surrogate heads in the study of Traumatic Brain Injury (TBI) using experimental and computational approaches. PhD Thesis, University of Nebraska - Lincoln (2013)Google Scholar
  30. 30.
    Salzar, R.S., Treichler, D., Wardlaw, A., Weiss, G., Goeller, J.: Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads. J. Neurotrauma 34(8), 1589–1602 (2017). doi: 10.1089/neu.2016.4600 CrossRefGoogle Scholar
  31. 31.
    Roberts, J., Harrigan, T., Ward, E., Nicolella, D., Francis, L., Eliason, T., Merkle, A.: The influence of neck kinematics on brain pressures and strains under blast loading. In: ASME 2013 International Mechanical Engineering Congress and Exposition 2013, Paper No. IMECE2013-64821, pp. V03AT03A013. American Society of Mechanical Engineers (2013). doi: 10.1115/IMECE2013-64821
  32. 32.
    Tan, X., Kannan, R., Przekwas, A.J., Ott, K., Harrigan, T., Roberts, J., Merkle, A.: An enhanced articulated human body model under C4 blast loadings. In: ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX 2012, Paper No. IMECE2012-89067, pp. 821–828. American Society of Mechanical Engineers (2012). doi: 10.1115/IMECE2012-89067
  33. 33.
    Tan, X., Przekwas, A.J., Rule, G., Iyer, K., Ott, K., Merkle, A.: Modeling articulated human body dynamics under a representative blast loading. In: ASME 2011 International Mechanical Engineering Congress and Exposition 2011, Paper No. IMECE2011-64331, pp. 71–78. American Society of Mechanical Engineers (2011). doi: 10.1115/IMECE2011-64331
  34. 34.
    Lockhart, P., Cronin, D., Williams, K., Ouellet, S.: Investigation of head response to blast loading. J. Trauma 70(2), E29–E36 (2010). doi: 10.1097/TA.0b013e3181de3f4b CrossRefGoogle Scholar
  35. 35.
    Haladuick, T.N., Cronin, D.S., Lockhart, P.A., Singh, D., Bouamoul, A., Dionne, J.-P., Ouellet, S.: Head kinematics resulting from simulated blast loading scenarios. DTIC Document Accession Number ADA584124 (2012)Google Scholar
  36. 36.
    Sielicki, P.W., Gajewski, T.: Human body motion under explosion: numerical analysis of blast and personal safety. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece (2016)Google Scholar
  37. 37.
    Pudenz, R.H., Shelden, C.H.: The lucite calvarium—a method for direct observation of the brain: II. Cranial trauma and brain movement. J. Neurosurg. 3(6), 487–505 (1946). doi: 10.3171/jns.1946.3.6.0487 CrossRefGoogle Scholar
  38. 38.
    Margulies, S.S., Thibault, L.E., Gennarelli, T.A.: Physical model simulations of brain injury in the primate. J. Biomech. 23(8), 823–836 (1990). doi: 10.1016/0021-9290(90)90029-3 CrossRefGoogle Scholar
  39. 39.
    Meaney, D.F., Smith, D.H., Shreiber, D.I., Bain, A.C., Miller, R.T., Ross, D.T., Gennarelli, T.A.: Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma 12(4), 689–694 (1995). doi: 10.1089/neu.1995.12.689 CrossRefGoogle Scholar
  40. 40.
    Bayly, P., Ji, S., Song, S., Okamoto, R., Massouros, P., Genin, G.: Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J. Biomech. Eng. 126(4), 523–528 (2004). doi: 10.1115/1.1785811 CrossRefGoogle Scholar
  41. 41.
    Merkle, A., Wing, I., Roberts, J.: Human surrogate head response to dynamic overpressure loading in protected and unprotected conditions. In: 26th Southern Biomedical Engineering Conference SBEC 2010, April 30–May 2 2010, College Park, Maryland, USA 2010, pp. 22–25. Springer (2010). doi: 10.1007/978-3-642-14998-6_6
  42. 42.
    Fournier, E., Sullivan, D., Bayne, T., Shewchenko, N., Martineau, L.: Blast headform development. DRDC–Valcartier, CR 2007-234 (2007)Google Scholar
  43. 43.
    Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.: Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front. Neurol. 6, 72 (2015). doi: 10.3389/fneur.2015.00072 CrossRefGoogle Scholar
  44. 44.
    Sawyer, T.W., Wang, Y., Ritzel, D.V., Josey, T., Villanueva, M., Shei, Y., Nelson, P., Hennes, G., Weiss, T., Vair, C.: High-fidelity simulation of primary blast: direct effects on the head. J. Neurotrauma 33(13), 1181–1193 (2016). doi: 10.1089/neu.2015.3914 CrossRefGoogle Scholar
  45. 45.
    Armiger, R.S., Otake, Y., Iwaskiw, A.S., Wickwire, A.C., Ott, K.A., Voo, L.M., Armand, M., Merkle, A.C.: Biomechanical response of blast loading to the head using 2D-3D cineradiographic registration. In: Mechanics of Biological Systems and Materials, Volume 4, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 127–134. Springer (2014). doi: 10.1007/978-3-319-00777-9_18
  46. 46.
    Armand, M., Armiger, R., Mendat, D., Lepistö, J., Tallroth, K., Mears, S., Belkoff, S., Taylor, R., Murphy, R., Chintalapani, G.: Computer-assisted orthopedic surgery with real-time biomechanics. J. Hopkins APL Tech. Dig. 28(3), 214–215 (2010)Google Scholar
  47. 47.
    Walker, L.B., Harris, E.H., Pontius, U.R.: Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. SAE Technical Paper 730985 (1973). doi: 10.4271/730985
  48. 48.
    Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Gr. 21(4), 145–152 (1987). doi: 10.1145/37402.37420 MathSciNetCrossRefGoogle Scholar
  49. 49.
    Varas, J.M., Philippens, M., Meijer, S., Van Den Berg, A., Sibma, P., Van Bree, J., De Vries, D.: Physics of IED blast shock tube simulations for mTBI research. Front. Neurol. 2, 58 (2011). doi: 10.3389/fneur.2011.00058 Google Scholar
  50. 50.
    Bowen, I.G., Fletcher, E.R., Richmond, D.R.: Estimate of man’s tolerance to the direct effects of air blast. Defense Atomic Support Agency, Washington, D.C., pp. 1–44 (1968)Google Scholar
  51. 51.
    Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng. 126(2), 226–236 (2004). doi: 10.1115/1.1691446 Google Scholar
  52. 52.
    Ward, C., Chan, M., Nahum, A.: Intracranial pressure—a brain injury criterion. In: SAE Technical Paper 801304 (1980). doi: 10.4271/801304
  53. 53.
    Panzer, M.B., Myers, B.S., Capehart, B.P., Bass, C.R.: Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40(7), 1530–1544 (2012). doi: 10.1007/s10439-012-0519-2 CrossRefGoogle Scholar
  54. 54.
    Kraft, R.H., Dagro, A.M.: Design and implementation of a numerical technique to inform anisotropic hyperelastic finite element models using diffusion-weighted imaging. ARL-TR-5796, Army Research Laboratory, Aberdeen Proving Ground (2011)Google Scholar
  55. 55.
    Yang, B., Tse, K.-M., Chen, N., Tan, L.-B., Zheng, Q.-Q., Yang, H.-M., Hu, M., Pan, G., Lee, H.-P.: Development of a finite element head model for the study of impact head injury. Biomed. Res. Int. 2014, Article 408278 (2014). doi: 10.1155/2014/408278
  56. 56.
    Singh, D., Cronin, D.S., Lockhart, P.A., Haladuick, T.N., Bouamoul, A., Dionne, J.-P.: Evaluation of head response to blast using sagittal and transverse finite element head models. DTIC Document Accession Number ADA587556 (2012)Google Scholar
  57. 57.
    Tashman, S., Anderst, W.: In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Trans. Am. Soc. Mech. Eng. J. Biomech. Eng. 125(2), 238–245 (2003). doi: 10.1115/1.1559896 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. S. Iwaskiw
    • 1
    Email author
  • K. A. Ott
    • 1
  • R. S. Armiger
    • 1
  • A. C. Wickwire
    • 1
  • V. D. Alphonse
    • 1
  • L. M. Voo
    • 1
  • C. M. Carneal
    • 1
  • A. C. Merkle
    • 1
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations