Skip to main content
Log in

Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

Shock Waves Aims and scope Submit manuscript

Abstract

The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Taylor, P.A., Ford, C.C.: Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131(6), 061007 (2009). doi:10.1115/1.3118765

    Article  Google Scholar 

  2. Sosa, M.A.G., De Gasperi, R., Paulino, A.J., Pricop, P.E., Shaughness, M.C., Maudlin-Jeronimo, E., Hall, A.A., Janssen, W.G.M., Yuk, F.J., Dorr, N.P., Dickstein, D.L., McCarron, R.M., Chavko, M., Hof, P.R., Ahlers, S.T., Elder, G.A.: Blast overpressure induces shear-related injuries in the brain of rats exposed to a mild traumatic brain injury. Acta Neuropathol. Commun. 1, 51 (2013). doi:10.1186/2051-5960-1-51

    Article  Google Scholar 

  3. Ryu, J., Szakaly, I.H., Xu, L., Pletnikova, O., Leri, F., Eberhart, C., Troncoso, J.C., Koliatsos, V.E.: The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol. Commun. 2, 153 (2014). doi:10.1186/s40478-014-0153-3

    Article  Google Scholar 

  4. Espindola, D., Lee, S., Pinton, G.: Shear shock waves are observed in the brain. ArXiv e-prints 1705.10672 (2017)

  5. Catheline, S., Gennisson, J.-L., Tanter, M., Fink, M.: Observation of shock transverse waves in elastic media. Phys. Rev. Lett. 91(16), 164301 (2003). doi:10.1103/PhysRevLett.91.164301

    Article  Google Scholar 

  6. Gadd, C.: Use of weighted impulse criterion for estimating injury hazard. Tech rep., SAE Technical Paper (1966). doi:10.4271/660793

  7. Rimel, R.W., Giordani, B., Barth, J.T., Boll, T.J., Jane, J.A.: Disability caused by minor head injury. Neurosurgery 9(3), 221–228 (1981). doi:10.1097/00006123-198109000-00001

    Google Scholar 

  8. Rowson, S., Duma, S.M.: Brain injury prediction: Assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41(5), 873–882 (2013). doi:10.1007/s10439-012-0731-0

    Article  Google Scholar 

  9. Guskiewicz, K.M., Mihalik, J.P., Shankar, V., Marshall, S.W., Crowell, D.H., Oliaro, S.W., Ciocca, M.F., Hooker, D.N.: Measurement of head impacts in collegiate impact biomechanics and acute clinical outcome after concussion. Inj. Prev. 61(6), 1244–1253 (2007). doi:10.1227/01.neu.0000306103.68635.1a

    Google Scholar 

  10. Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23(9), 633–645 (2001). doi:10.1016/S1350-4533(01)00101-1

    Article  Google Scholar 

  11. Rashid, B., Destrade, M., Gilchrist, M.D.: Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 28, 71–85 (2013). doi:10.1016/j.jmbbm.2013.07.017

    Article  Google Scholar 

  12. Coats, B., Margulies, S.S.: Material properties of porcine parietal cortex. J. Biomech. 39(13), 2521–2525 (2006). doi:10.1016/j.jbiomech.2005.07.020

    Article  Google Scholar 

  13. Lin, D.C., Shreiber, D.I., Dimitriadis, E.K., Horkay, F.: Spherical indentation of soft matter beyond the Hertzian regime: Numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 8(5), 345–358 (2009). doi:10.1007/s10237-008-0139-9

    Article  Google Scholar 

  14. Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. Heart Circ. Physiol. 237(5), H620–H631 (1979)

    Google Scholar 

  15. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996). doi:10.5254/1.3538357

    Article  MathSciNet  Google Scholar 

  16. Ogden, R.W.: Large deformation isotropic elasticity—On the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 326, 565–584 (1972). doi:10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  17. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer Science & Business Media (1981). doi:10.1007/978-1-4757-1752-5

  18. Zabolotskaya, E.A., Hamilton, M.F., Ilinskii, Y.A., Meegan, G.D.: Modeling of nonlinear shear waves in soft solids. J. Acoust. Soc. Am. 116(5), 2807 (2004). doi:10.1121/1.1802533

    Article  Google Scholar 

  19. Wochner, M.S., Hamilton, M.F., Ilinskii, Y.A., Zabolotskaya, E.A.: Cubic nonlinearity in shear wave beams with different polarizations. J. Acoust. Soc. Am. 123(5), 2488–2495 (2008). doi:10.1121/1.2890739

    Article  Google Scholar 

  20. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

  21. Goriely, A., Weickenmeier, J., Kuhl, E.: Stress singularities in swelling soft solids. Phys. Rev. Lett. 117, 138001 (2016). doi:10.1103/PhysRevLett.117.138001

    Article  Google Scholar 

  22. Hosey, R.R., Liu, Y.K.: A homeomorphic finite element model of the human head and neck. In: Gallagher, R.H., Simon, E.R., Johnson, P.C., Gross, J.F. (eds.). Finite Elements in Biomechanics, pp. 379–401. Wiley, New York (1982)

  23. Shugar, T.A.: A finite element head injury model. National Highway Traffic Safety Administration, Technical report, Department of Transportation (1977)

  24. Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1), 21–30 (2001). doi:10.1089/089771501750055749

    Article  Google Scholar 

  25. Mendis, K.: Finite element modeling of the brain to establish diffuse axonal injury criteria. PhD thesis, Ohio State University, Mechanical Engineering (1992)

  26. Rénier, M., Gennisson, J.L., Barrière, C., Catheline, S., Tanter, M., Royer, D., Fink, M.: Measurement of shear elastic moduli in quasi-incompressible soft solids. AIP Conf. Proc. 1022, 303–306 (2008). doi:10.1063/1.2956214

    Article  Google Scholar 

  27. Catheline, S., Gennisson, J.L., Fink, M.: Measurement of elastic nonlinearity of soft solid with transient elastography. J. Acoust. Soc. Am. 114(61), 3087–3091 (2003). doi:10.1121/1.1610457

    Article  Google Scholar 

  28. Giammarinaro, B., Coulouvrat, F., Pinton, G.: Numerical simulation of focused shock shear waves in soft solids and a two-dimensional nonlinear homogeneous model of the brain. J. Biomech. Eng. 138(4), 041003 (2016). doi:10.1115/1.4032643

    Article  Google Scholar 

  29. Pinton, G., Coulouvrat, F., Gennisson, J.L., Tanter, M.: Nonlinear reflection of shock shear waves in soft elastic media. J. Acoust. Soc. Am. 127(2), 683–691 (2010). doi:10.1121/1.3277202

    Article  Google Scholar 

  30. McDonald, B.E., Ambrosiano, J.: High-order upwind flux correction methods for hyperbolic conservation laws. J. Comput. Phys. 56(3), 448–460 (1984). doi:10.1016/0021-9991(84)90106-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984). doi:10.1016/0021-9991(84)90143-8

    Article  MATH  Google Scholar 

  32. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979). doi:10.1016/0021-9991(79)90145-1

    Article  MATH  Google Scholar 

  33. Dai, W., Woodward, P.R.: Extension of the piecewise parabolic method to multidimensional ideal magnetohydrodynamics. J. Comput. Phys. 115, 485–514 (1994). doi:10.1006/jcph.1994.1212

    Article  MathSciNet  MATH  Google Scholar 

  34. Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. Suppl. Ser. 160(1), 199–219 (2005). doi:10.1086/430905

    Article  Google Scholar 

  35. Almgren, A.S., Beckner, V.E., Bell, J.B., Day, M.S., Howell, L.H., Joggerst, C.C., Lijewski, M.J., Nonaka, A., Singer, M., Zingale, M.: CASTRO: A new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715(2), 1221–1238 (2010). doi:10.1088/0004-637X/715/2/1221

    Article  Google Scholar 

  36. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984). doi:10.1016/0021-9991(84)90142-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Sytine, I.V., Porter, D.H., Woodward, P.R., Hodson, S.W., Winkler, K.-H.: Convergence tests for the piecewise parabolic method and Navier–Stokes solutions for homogeneous compressible turbulence. J. Comput. Phys. 158(2), 225–238 (2000). doi:10.1006/jcph.1999.6416

    Article  MATH  Google Scholar 

  38. Miller, G.H., Colella, P.: A conservative three-dimensional Eulerian method for coupled solid–fluid shock capturing. J. Comput. Phys. 183(1), 26–82 (2002). doi:10.1006/jcph.2002.7158

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, H.Q., Przekwas, A.J.: A comparative study of advanced shock-capturing schemes applied to Burgers’ equation. J. Comput. Phys. 102(1), 139–159 (1992). doi:10.1016/S0021-9991(05)80012-9

    Article  MathSciNet  MATH  Google Scholar 

  40. Duck, F.A.: Physical Properties of Tissues: A Comprehensive Reference Book. Academic Press, Cambridge (2013)

    Google Scholar 

  41. Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D., Fowlkes, J.B., Emelianov, S.Y.: Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24(9), 1419–1435 (1998). doi:10.1016/S0301-5629(98)00110-0

    Article  Google Scholar 

  42. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7, 3rd edn. Elsevier, New York (1986)

    MATH  Google Scholar 

  43. Pinton, G., Coulouvrat, F., Gennisson, J.-L., Tanter, M.: Nonlinear reflection of shock shear waves in soft elastic media. J. Acoust. Soc. Am. 127(2), 683–691 (2010). doi:10.1121/1.3277202

    Article  Google Scholar 

  44. Trangenstein, J.A.: Numerical Solution of Hyperbolic Partial Differential Equations, 1st edn. Cambridge Press, Cambridge (2009)

    MATH  Google Scholar 

  45. Hamilton, M., Blackstock, D.: Nonlinear Acoustics. Academic Press, Cambridge (1997)

    MATH  Google Scholar 

  46. Dagrau, F., Rénier, M., Marchiano, R., Coulouvrat, F.: Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation. J. Acoust. Soc. Am. 130(1), 20–32 (2011). doi:10.1121/1.3583549

    Article  Google Scholar 

  47. Smoller, J.: Shock Waves and Reaction–Diffusion Equations, vol. 258. Springer Science & Business Media (1994). doi:10.1007/978-1-4612-0873-0

  48. Pinton, G., Gennisson, J.-L., Tanter, M., Coulouvrat, F.: Adaptive motion estimation of shear shock waves in soft solids and tissue with ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(9), 1489–1503 (2014). doi:10.1109/TUFFC.2014.3063

    Article  Google Scholar 

  49. Walker, W.F., Trahey, G.E.: A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(2), 301 (1995). doi:10.1109/58.365243

    Article  Google Scholar 

Download references

Acknowledgements

This work is done under the framework of Project: NIH R01 NS091195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Pinton.

Additional information

Communicated by O. Petel and S. Ouellet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, B.B., Espíndola, D. & Pinton, G.F. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms. Shock Waves 27, 879–888 (2017). https://doi.org/10.1007/s00193-017-0734-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0734-8

Keywords

Navigation